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Abstract

Economic theory suggests that decentralized markets can achieve efficient outcomes if buyers
and sellers have many opportunities to trade. We examine this idea empirically by developing
a tractable dynamic model of bidding in an overlapping, sequential auction environment and
estimating the model with detailed data from eBay. The key features of the model are that
the platform posts information about the state of play in each auction and bidders use that
information when choosing in which auction to bid and how much to bid. We prove that
when markets are thick enough, considerations about how a bidder’s choices influence her re-
entry payoff (conditional on losing) become unimportant, so that optimal bid strategies are
invariant to the state of play and monotonically increasing in type. Given this result, we
show that our model is identified from bidding data. Our estimator accounts for the selection
effect that arises from the endogeneity of auction choice and avoids what would otherwise be
a substantial underestimate of bidders’ valuations. We use our estimated model to show that
dynamic participation makes the market meaningfully more efficient than a benchmark in which
buyers have only one opportunity to bid, but the observed outcomes still fall well short of the
fully efficient competitive equilibrium.
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1 Introduction

Many goods and services are sold or acquired through decentralized, dynamic auction markets. For

instance, online platforms like eBay create virtual markets in which a large number of sellers and

buyers arrive over time, get matched, and trade through auctions. These markets are dynamic

because buyers who fail to purchase—and sellers who fail to sell—can return to the market to try

again. They are decentralized because the sellers sell their goods in separate auctions, and buyers

choose in which auctions to bid. The online platform facilitates the matching by providing infor-

mation about the state of play in each auction, but frictions resulting from private information and

strategic behavior can still cause trade within a matched set of traders to be inefficient. However,

the opportunity to trade many times makes the market for each trader large over time, and this

feature can mitigate the effects of matching and trading frictions. This raises several questions.

The positive question is: How does the option to trade again affect prices and efficiency? The nor-

mative questions are: Should the platform provide information about the state of play in individual

auctions? Can a centralized mechanism, like a double auction for all buyers and sellers in a period,

achieve significantly better outcomes?

The goal of this paper is to address these questions for a real-world auction market like eBay.

To achieve this goal, we develop a novel theoretical model that captures the main features of the

eBay marketplace: namely, that buyers select in real time among a set of overlapping auctions,

with the platform posting information about the state of bidding in each of those auctions. Sellers

arrive sequentially over time, and each seller sells one unit of a homogenous good in a second-

price, ascending price auction of fixed duration. The arrival rate is sufficiently high, and duration

sufficiently long, that at any moment in time the market consists of a large number of overlapping

auctions with different closing times. Buyers arrive randomly over time and upon arrival observe

the highest losing bid (or start price if there are no bids) and time remaining in each available

auction. Buyers use this information to decide in which auction to bid and how much to bid.

Winners exit, and buyers who lose either exit or return at some random time in the future to bid

again.

We discretize time, values, and bids with arbitrarily fine grids and use the theory of Markov chains

to prove existence of a stationary equilibrium. We then provide a large market approximation

result that makes the model empirically tractable and useful. When a buyer has the option to bid

again after losing, her optimal bid depends on her beliefs about her re-entry payoff if and when she

returns to try again. In our setting, those beliefs depend on the losing state since it is correlated

with the return state. Her beliefs also depend on her choice of auction and the bid she submits in

that auction, since these actions affect the decisions of subsequent buyers. We first use a law of

2



large numbers argument to prove that, as markets thicken, many buyers arbitraging across many

auctions mean that these considerations become unimportant. In the limit, a buyer’s continuation

value conditional on losing depends only on her type, not on her previous actions or on the losing

state. We then prove that it is nearly optimal (in the ε-equilibrium sense) for each buyer to always

bid her type minus her continuation value. This bid is invariant to the state of play or choice of

auction and is strictly increasing in a bidder’s value.

The intuition for our limit result is that in thick markets the state is likely to undergo many

transitions before a losing buyer returns, so the effects of the losing state and her past actions on

her expected re-entry payoff have largely washed away. However, our limit result does not require

buyers to believe that they will face the steady-state distribution of states if they lose and bid again;

instead, it implies that they expect to face the steady-state distribution of re-entry payoff values.

Arbitrage causes many states to have nearly the same value, so the expected re-entry payoff can

be independent of the losing state even though the expected return state is not. This is important

because in our application—the eBay market for iPads—losing buyers sometimes return quickly

before many of the auctions that were open when they lost have closed. They would thus expect

the state when they return to be very similar to the state when they exited, rather than expecting

a fresh draw from the steady state distribution.

The invariance and monotonicity properties of the equilibrium bid function are crucial to our

identification and estimation strategy. Monotonicity implies that a bidder’s type can be equivalently

be represented by her equilibrium bid, or what Backus and Lewis (2019) call her “pseudo-type.”

By applying the transformation of variables that Elyakime, Laffont, Loisel, and Vuong (1994) and

Guerre, Perrigne, and Vuong (2000) introduced for static, first-price auctions, we show that, in

our setting, the unobserved value of a buyer can be expressed as a function of her bid and the

distribution of the maximum rival bid conditional on her pseudo-type. The dependence between a

buyer’s pseudo-type and the maximum rival bid arises mainly from the fact that she chooses the

auction based on the observed state of play—that is, the highest losing bids and closing times of

the available auctions. Since we observe all bids, including the winning bid, and the identities of

the bidders, we can account for this selection effect by estimating the probability that a buyer with

pseudo-type b wins conditional on the set of auctions chosen (in the different states) by buyers who

bid b. Thus, the distribution of values of new buyers (or the distribution of values of returning

buyers) can be identified and estimated based on the choice rule that buyers actually use, instead

of deriving the equilibrium choice rule or imposing assumptions about that choice rule.

Our model generates several testable implications. The invariance property implies that buyers

who lose and return should bid the same amount. Since we observe bidder identities, we can track

the bids of these buyers and directly test this implication. In a stationary equilibrium, the number
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of returning bidders per auction depends only on the arrival rate of new buyers and the exit rate

of losers. We test this restriction. More generally, the flow of losing buyer types who return to

the market must on average be equal to the flow of buyer types (new and returning) who leave the

market, either by winning or by exiting. The latter restriction implies that the stationary density

of losers’ values is proportional to the density of new bidders’ values. Since we can estimate the

distribution of values of returning buyers directly from the data, we use these restrictions to test the

model. Finally, the estimated inverse bid function needs to be increasing in a buyer’s pseudo-type.

We find that the data are consistent with each of these implications.

Given estimates of the model primitives, we simulate a number of counterfactuals. The first set

focuses on the efficiency of the eBay trading mechanism, which we compare to two hypothetical

benchmarks. One is the fully efficient benchmark, which we compute by finding the price that

would clear the market if the platform were to pool all buyers and all sellers and conduct a single

uniform-price auction. The other is a fully decentralized, static mechanism in which the sellers hold

separate, simultaneous second-price auctions and buyers are randomly assigned to those auctions.

In this mechanism, each buyer gets only one chance to win a unit. We find that the actual eBay

mechanism meaningfully increases efficiency relative to this second benchmark, but falls well short

of the fully efficient outcome. Prices in the eBay mechanism are higher and much less dispersed

than in the static, decentralized mechanism, but the average eBay price is significantly lower than

the market-clearing price of the centralized mechanism.

A second set of simulations evaluates the impact of eBay’s real-time disclosure of the highest losing

bid in each auction on efficiency and prices. Specifically, we run simulations in which eBay does not

post the highest losing bid in an auction before it closes, so the auctions are effectively sealed bid

auctions.1 In this case, there is an equilibrium in which buyers always bid in the soonest-to-close

auction. This is a dynamic version of the random matching that occurs in a static, decentralized

market, except that in this case buyers are able to return to try again if they lose. Our simulation

solves for equilibrium bids and computes various auction outcomes. We find that not posting

the highest losing bid lowers the average price but significantly increases efficiency relative to the

outcomes we observe in the data. The intuition here is that disclosure tends to make the auctions

more competitive by disproportionately matching two high-value bidders, but it also makes it

more likely that high value buyers exit without winning a unit. This sorting of high-value buyers

under the open auction mechanism also generates significantly more price dispersion than would

be observed under random matching.

In the third set of simulations, we quantify the effects of dynamic competition on prices and

1This situation can also arise in open auctions if buyers wait until the last minute to submit their bids. Several
papers (e.g., Ockenfels and Roth (2006), Bajari and Hortascu (2003)) have argued for this model of eBay auctions.
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efficiency by letting the exit rate go to zero. The option to bid again leads buyers to shade their

bids below their values, which we refer to as the dynamic bidding effect. It also increases the level

of competition in the market, which we refer to as the dynamic participation effect. In theory, these

two effects should cause the market to converge to the competitive outcome as the exit rate goes to

zero. Buyers with values above the market-clearing price should bid that price and win almost surely

(although it may take many tries), and buyers with values below the market-clearing price should

bid their value and lose almost surely. Thus, as the exit rate goes to zero, the dynamic bidding

effect should eliminate prices above the market-clearing price, and the dynamic participation effect

should eliminate prices below the market-clearing price. Our simulations suggest that the latter

effect is more substantial: when the exit rate is small, low prices are mostly eliminated, but a

surprising amount of dispersion above the market-clearing price remains.

In Section 2 below we review the related literature, both theoretical and empirical. Section 3

describes the model and presents our main results about equilibrium bidding, and also explains

how the model can be empirically estimated. We describe the data and estimation results in

Sections 5 and 6, respectively. Section 7 presents the results from our counterfactual simulations,

and Section 8 concludes.

2 Related Literature

Our paper is related to the theoretical literature that studies decentralized, dynamic auction mar-

kets with a large number of buyers and sellers. This literature focuses on settings in which a

continuum of sellers and a continuum of buyers arrive each period to trade units of a homogenous

good, each buyer is randomly matched to one seller, each seller is matched to a random number

of buyers, and traders who fail to trade either exit or return the following period. McAfee (1993)

uses this framework to study competing mechanisms and shows that, in steady state, there is an

equilibrium in which all sellers choose to sell via second-price sealed-bid auctions. Satterthwaite

and Shneyerov (2007, 2008) consider a model with two-sided private information and examine what

happens to prices and allocations when the number of trading opportunities for each trader is large.

They show that in all steady state, Bayesian equilibria, prices converge to the Walrasian price and

allocations converge to the efficient allocation. They conclude that simple selling mechanisms like

individual auctions can allocate supply almost efficiently in a decentralized, dynamic auction, and

that the gains from running a centralized mechanism—like a double auction for all buyers and

sellers in a period—may be quite limited in markets with a large number of buyers and sellers.

Bodoh-Creed, Boehnke, and Hickman (2020) show that a steady state equilibrium of this model is
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an ε-equilibrium of the analogous model with a finite number of buyers and sellers.2

Our paper contributes to this literature by characterizing equilibrium behavior in settings where

buyers and sellers are matched and trade in real time based on the observed state of play in the

auctions. The main challenge in analyzing this setting, however, is that in principle forward-looking

buyers need to condition their decisions on the current state of play and consider how their actions

affect subsequent play. This issue does not arise in the random matching (RM) models because of

the random assignment and because the actions of any single buyer today have negligible impact

on the state of the market tomorrow: in steady state, tomorrow’s state is the same as today’s state.

We provide an analogous result for real-time matching and trading models like eBay with a large

(but finite) number of buyers and sellers: arbitrage across auctions by buyers will equalize a buyer’s

continuation value across possible return states. The key assumption is that losing buyers return

randomly over time, not immediately as in the RM model. We then thicken the market by letting

the time between seller arrivals go to zero, holding fixed the expected return time of a buyer and

the expected number of new buyers per auction. In the limit, buyers in our model behave as they

do in the RM models in the sense that they bid their value less a continuation value that depends

only on their type, not on the current observed state of play or their actions.3 That continuation

value, however, differs from the one in the RM models, because buyers choose which auctions to bid

in. This dependence of continuation values on the matching process has fundamental implications

for empirical work.

On the empirical side, there is a nascent literature on structural estimation for dynamic auction

markets in which buyers know their values and those values are perfectly persistent over time.4

Backus and Lewis (2019) model eBay as a sequence of sealed bid auctions and use data on buyers’

product choices and bids to estimate substitution patterns in a differentiated good market. Adachi

(2016) and Bodoh-Creed et al (2020) estimate models of eBay auctions for homogenous goods in

order to evaluate the efficiency and prices of the eBay mechanism. In each of these three papers,

the authors argue that because most of the bids that matter in an auction are submitted near the

end of the auction, posted prices are not very informative about closing prices or winning bids, so

buyers ignore this information when they make their bidding decisions. Specifically, the authors

2A second strand of this literature characterizes equilibrium bidding in settings where buyers arrive randomly over
time and compete in an infinite sequence of single unit, sealed bid, second-price auctions (e.g., Said (2011), Backus
and Lewis (2019), and Zeithammer (2006)). These two strands focus on inter-auction dynamics. There is another
strand that studies intra-auction dynamics of equilibrium bidding in open second-price auctions (e.g., Hopenhayn
and Saeedi (2017)).

3An important empirical implication of this result is that our dynamic model is identified under any auction
format in which the static, one-shot auction is identified, not just the second-price auction. This is a property that
Bodoh-Creed et al (2020) refer to as the “plug-and-play” property, and they show that it holds for the RM model.

4This setting is very different from the one studied by Jofre-Bonet and Pesendorfer (2003), Groeger (2014), Balat
(2017), and Raisingh (2020). They study repeated auction environments in which each bidder gets an independent
draw for each auction and does not learn that value until the auction is held.
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assume that buyers participate in the soonest-to-close auction (or alternatively the last hour of the

auction) and bid in that auction as if it were a sealed bid auction. Since entry times of buyers

and sellers are random, this rule generates a random assignment of buyers to sellers. The authors

also assume that, when buyers compute their re-entry payoffs, their beliefs about the probability of

winning are given by the stationary distribution of the highest rival bid, regardless of how quickly

they return. These assumptions may not be consistent with equilibrium play in general, but in our

counterfactual analysis we show that they can be rationalized if eBay does not post the highest

losing bid and if losing bidders do not return immediately. Thus, in making these assumptions,

the literature is essentially assuming that the data-generating process can be approximated by the

equilibrium of a model in which the eBay auctions are sealed bid auctions and losing buyers return

randomly over time.

Our innovation relative to this literature is to develop a more general empirical model in which

posted prices are informative and matching is endogenous. Buyers in our model arbitrage differences

among the auctions by choosing the one that is the best match for them based on the observed state

of play.5 Furthermore, each buyer anticipates how her choice of auction and her bid can influence

the choices and bids of subsequent buyers in ways that can change her payoff in that auction. The

arbitrage activity is especially important when the market experiences a run of high value buyers

and soon-to-close auctions fill up. As described above, we provide conditions under which a buyer’s

optimal bid depends only on her type, and not on which auction she chooses to bid in.

Given that constant-bidding result, we show that our model can be identified from bidding data

without solving for the equilibrium auction choice rule. Our strategy involves computing the

continuation value of a type-b buyer using the distribution of the maximum rival bid in the set

of auctions (in the different states) chosen by type-b buyers. This value can be estimated directly

from the data, since the expected re-entry payoff of a type-b buyer is simply her win rate times

the average price paid in the auctions that she wins. The continuation value function identifies

the equilibrium (inverse) bid function, which can then be applied to the bids of new buyers to

obtain the distribution of new buyer values. This approach nests random matching as a special

case. If the set of auctions chosen by type-b buyers is a random sample, then the distribution

of the highest rival bid in the set of auctions chosen by type-b buyers should be the same as the

distribution of the highest rival bid in the set of of all auctions.6 We compute the continuation value

functions associated with these two distributions and find that ignoring auction selection leads to

a substantial overestimate of buyers’ continuation values (and underestimate of their valuations),

5We assume that all buyers find a match, since there is always an auction that closes within a day that has no
bids and a low start price.

6In our model, the numbers of new and returning buyers entering per period are assumed to be Poisson random
variables, so the distribution of the highest rival bid is equivalent to the distribution of the winning bid under the
null hypothesis of no selection.
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especially for high-value buyers. We provide further evidence against the random matching model

in our empirical analysis.

However, our identification strategy is more data-intensive than the ones used previously in the

literature. Their strategies are based on the assumption that the price and winning bid of an auction

are the second and first order statistics from an exogenous and random set of buyers. Given this

assumption, the authors show that the distribution of values of new buyers can be identified from

data on prices or winning bids. The basic idea is to obtain the parent distribution of bids from the

distribution of the order statistic and then apply the inverse bid function to bids from the parent

distribution to obtain the associated distribution of values.7 By contrast, we require researchers

to observe the identities of all bidders, the auctions in which they bid, and the value of their bids

(including the winning bid). This data requirement is analogous to the result obtained by Athey

and Haile (2002) that the symmetric, affiliated private value model is not identified unless all bids

are observed. The difference here is that the dependence between a buyer’s type and the maximum

rival bid comes from the buyer’s choice of auctions rather than from their values.

There is an earlier structural literature that models eBay auctions as independent, static games

(e.g., Bajari and Hortascu (2003), Gonzalez, Hasker, and Sickles (2004), Canals-Cerda and Pearcy

(2006), Ackerberg, Hirano, and Shahriar (2006) and Lewis (2011)). Our results suggest that static

models may not be a good approximation when studying issues related to auction design. First,

by ignoring the option to bid in other, concurrent auctions, static models fail to account for buyers

choosing an auction based on the state of play. We find that the selection effects from endogenous

matching have a significant impact on our estimates of the distribution of buyer values. Second,

by ignoring the option to bid again in a future auction, they tend to overestimate the values of the

bidder (and underestimate markups), although our results suggests that this effect may be small

on average. Third, and perhaps most importantly, by ignoring the distinction between new and

returning buyers, these papers implicitly treat the steady state distribution of buyer values as the

primitive rather than the distribution of new buyer values. This matters for counterfactuals, since

changes in the auction mechanism are likely to lead to a different stationary distribution of buyer

values.

Finally, our paper contributes to the empirical literature on dynamic search-and-bargaining models

of trade, such as Gavazza’s (2011, 2016) studies of the market for used aircraft, Brancaccio et al’s

(2018) study of global shipping, Buchholz’s (2017) study of the New York City taxi market, and

7Bodoh-Creed et al (2020) cannot distinguish new and returning buyers, so they identify the distribution of new
buyer values from the steady state condition that the flow of types entering each period must be equal to the flow
that is exiting. Adachi (2016) observes bidder identities, so she simulates the model to identify the mapping between
the distribution of bids by new buyers to the stationary distribution of the order statistic, and then finds the bid
distribution that minimizes the difference between the simulated and observed distributions of the order statistic.
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Coey, Larsen, and Platt’s (2020) study of the effect of buyer deadlines on bidding in eBay auctions.

These papers approximate markets with finite numbers of buyers and sellers with a continuum of

agents. They focus on steady states and use the restrictions on entry and exit flows as the basis

for estimating the models’ primitives. By contrast, we work with the stationary state of a finite

market, and use the restrictions on flows as over-identifying tests of our model.

3 A Dynamic Model of Trade

Our model is a discrete approximation to an eBay auction market in which buyers arrive and bid

in continuous time. Discretizing time, values, and bids with arbitrarily defined grids means that

we can analyze the dynamics of the game using the theory of Markov chains. Our model focuses

on buyers and treats sellers as non-strategic players. The main reason is that, in our application,

sellers seem primarily interested in selling their item and do not appear to value the good or the

option to sell again. Most sellers choose very low start prices at which they are certain to sell.

Of the sellers who set binding start prices, only a small fraction fail to sell, and an even smaller

fraction return to sell again. By contrast, most buyers in our application lose, and half of them

return to bid again.

In our model, sellers arrive exogenously and deterministically to sell a homogenous good, with the

same length of time between arrivals. We define a unit of time to be the length of time between

arrivals. Upon arrival, each seller contracts with the platform to sell her good in an ascending,

second price auction and sets a start price equal to zero. Each auction lasts for J (an integer)

units, so in every unit of time one auction closes and another opens. Sellers who sell their goods

exit the market. If an auction fails to attract any bids, then the seller exits. The open auctions,

starting with the next-to-close, are indexed by j = 1, .., J. Time is discrete and indexed by t. We

divide each unit of time into T periods of equal length, so ∆ ≡ 1/T is the length of a period. Thus,

each auction lasts for J ·T periods. Let d(t) ∈ {1, .., T} denote the number of periods remaining in

the next-to-close auction in period t. The remaining time in auction j is dj(t) = d(t) + T · (j − 1).

Thus, at any time t, the supply side of the market consists of J overlapping auctions.

On the demand side, new buyers arrive randomly over time to buy a single unit of the good. The

number of new buyers arriving in a period is a random variable distributed according to a Poisson

distribution with mean λ∆. Arrivals are independent over periods. Each new buyer’s value for the

good is drawn independently according to distribution FE with density fE . The distribution has

finite support X contained in (0, x] where fE(x) > 0. A buyer’s value is fixed and does not change

over time. Upon arrival, a new buyer selects an auction in which to bid and which bid to submit.
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The set of bids is finite and given by B = {0, b, .., b} where 0 denotes no bid. A bid specifies the

“maximum” amount that the bidder is willing to pay, and the platform bids on his behalf up to

that level. These are known as proxy bids.8 If his bid is the winning bid, then he gets the good,

pays the second highest bid, and exits. If his bid is a losing bid, then he exits with probability α

and gets a payoff of zero;9 otherwise he goes to the pool of losing buyers and returns at some future

time to bid again.

An important feature of our model is that losing buyers that continue do not return immediately.

The return process is a discrete version of a continuous time process in which a bidder’s return

time is distributed exponentially with rate γ. In each period, the probability of returning is γ∆.

This arrival rate is independent across time and buyers, and does not depend on when the buyer

entered the pool, on how long she has been in the pool, or on her value. Thus, if the number of

buyers in the losers’ pool in a period is n, then the number of returning buyers in that period is

distributed Binomial with parameters (n, γ∆).10

The platform runs the auction market as follows. At the beginning of each period, the platform

lists the closing times of each open auction and posts the current highest losing bid in each auction

if it has received at least two bids, or the start price of zero otherwise.11 It does not disclose the

highest bids. We will sometimes refer to the highest losing bid (or start price if there are no bids)

in an auction as the posted bid in that auction. If multiple buyers (new or returning) arrive in the

same period, then they are ordered randomly, and their (simultaneously placed) bids are processed

in that order. When an auction with at least one bid closes, the platform awards the unit to the

highest bidder at the second-highest bid or, if there is only one bid, the start price. Let wj(t) ∈ B
denote the highest bid in auction j in period t and let rj(t) ∈ B denote the highest losing bid in

auction j in period t. The vectors of highest bids and highest losing bids in period t are w(t) and

r(t) respectively.

The payoff-relevant information in any period t consists of the closing times of the open auctions

d(t), the highest losing bids r(t) and highest bids w(t) in these auctions, the values of the highest

bidders, and the size and composition of the losers’ pool. Let aj(t) ∈ {0} ∪ X denote the value of

the high bidder in auction j (where aj(t) = 0 means that no one has bid in that auction) and let

a(t) denote the vector of aj(t)
′s. The state of the pool at the beginning of period t is represented

8Proxy bidding rules out intra-auction bidding dynamics such as incremental bidding. In our application, we do
observe some buyers submitting multiple bids in the same auction. We examine the prevalence of this kind of bidding
behavior and discuss how we address it in our empirical analysis below.

9If exit means not buying the good, then the value of the outside option is zero and x is a buyer’s willingness-to-pay
for the good. If exit involves buying the good at a fixed price (e.g., retail market), then the value of the outside
option is the consumer surplus from this purchase and x needs to interpreted as net of this surplus.

10As period length ∆ shrinks, the Binomial distribution converges to Poisson distribution with mean nγ∆.
11The platform also discloses the number of bids so a buyer can distinguish between an auction with no bids and

an auction with one bid.
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by the distribution NL(t) ∈ (Z+)|X |, which gives the number of losers of each type in the pool.

Then the (countable) set of states that can occur is given by

Ω ≡ {1, .., T} × BJ × {{0} ∪ X}J × BJ × (Z+)|X |.

A buyer bids in the period of his arrival. When he arrives in period t, he observes d(t) and r(t)

in the open auctions.12 We call ω̃(t) ≡ (d(t), r(t)) the observed state; Ω̃ is the set of observed

states that can occur. We restrict buyers to stationary strategies that condition only on their value

and the observable state. That is, given a value x, a (pure) strategy σx is a function from Ω̃ to

{1, .., J} × B. Let Σ denote the set of such mixed strategies. In what follows, when we refer to

“strategies,” we mean “stationary strategies” unless otherwise noted.13

3.1 State Transitions

Any profile σ = (σx)x∈X of mixed strategies, together with an initial condition ω0, defines a Markov

process Φ(σ) on Ω. The number of arrivals in a period of new and returning buyers of each type is

determined by the probabilities given above. These arrivals are randomly ordered, and they choose

in which auction to bid and what bid to submit according to σ. Returning buyers leave the losers’

pool at the beginning of each period, and losing buyers (new and returning) that fail to exit enter

the pool at the end of the period. When an auction closes, the winner exits.

The platform only accepts bids that are at least an increment above the posted bid, so any bids

submitted to auction j in period t must be strictly greater than rj(t). If more than one bidder

submits the same bid, then the tie goes to the one who submitted first. We describe these state

transitions more precisely in the appendix.

Those transitions, and the probabilities associated with them, define the one-step transition matrix

P (σ) generated by σ. We denote the n-step-ahead transition function as Pn(σ) and define the

probability of reaching state ω from an initial state ω0 in n-steps by Pn([ω0, ω];σ).

12In our application, the platform reports the history of highest losing bids in an auction and partially masked
identities of losing buyers for each auction that potential buyers can access at some small cost (of time). The
assumption here is that buyers do not bother to use this information in forming beliefs about the high bid or the
pool of losers. The value of this information is likely to be quite small in thick markets where buyers have the option
to bid again.

13The restriction to stationary strategies means that a returning buyer cannot condition on any private information
about his previous bidding experiences. That is, a returning buyer behaves the same way as a new buyer of the same
type.

11



3.2 Ergodicity

Given the observed state, buyers have to form beliefs about the high bids in the open auctions and

the state of the losers’ pool. We need these conditional beliefs to be well-defined. This requires

showing that a stationary strategy profile induces an ergodic distribution.

The first point to note is that Φ(σ) is not ergodic, because the d(t) component that tracks the

number of periods until the next auction closes is obviously periodic. We aim instead for a result

like the following. For each d ∈ {1, .., T}, let {ωd, ωT+d, .., ωnT+d..} track the state every time there

are d periods left in the next-to-close auction, and let Φ(σ, d) denote that Markov process. Given

state ω, let d(ω) denote the component that specifies the number of periods remaining in the next-

to-close auction. Thus, the state space of Φ(σ, d) is Ω(d) ≡ {ω ∈ Ω|d(ω) = d} and the n-step-ahead

transition function for Φ(σ, d) is PnT (σ). Proposition 1 establishes that the Markov process Φ(σ, d)

is ergodic—that is, it converges to a unique invariant distribution, π(σ, d), regardless of the initial

state.

Proposition 1 For any d and any initial state ω0 ∈ Ω(d), there exists a unique invariant distri-

bution π(σ, d) such that the Markov process Φ(σ, d) satisfies

max
ω∈Ω(d)

∣∣PnT ([ω0, ω];σ)− π(ω;σ, d)
∣∣→n→∞ 0.

Proof. See Appendix.

It would be sufficient to show that Φ(σ, d) is an irreducible, recurrent, and aperiodic14 process. In

general, Φ(σ, d) may not be irreducible. For example, suppose that there is an equilibrium where

arriving buyers bid only in the soonest-to-close auction. Under such strategies, states in which

later-to-close auctions have already received bids never occur. However, we can show that Φ(σ, d)

has a single absorbing communicating class ΩC(σ, d), because every state leads to the empty state

in which there are no bidders in any auction and the losers’ pool has no bidders.15 Thus, there

exists a Markov process ΦC(σ, d) with state space ΩC(σ, d) and the same transition probabilities as

above, restricted to ΩC(σ, d), that is irreducible and recurrent. It therefore has a unique invariant

measure, and because Φ(σ, d) eventually leads to ΩC(σ, d), Φ(σ, d) has the same unique invariant

measure. The process Φ(σ, d) is also aperiodic since the empty state transitions with positive

probability to itself. This establishes the proposition because an aperiodic process on a countable

14A Markov process is irreducible if every state can be reached from every other state; it is recurrent if in expectation
each state is visited infinitely often; and it is aperiodic if there is a state that transitions in one step to itself with
positive probability.

15A state ω leads to state ω′ if the probability of reaching ω′ from ω is strictly positive. Two states communicate
if each leads to the other.
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state space with a unique invariant probability measure is ergodic.

Given a state ω, let ω̃(ω) denote the observable component. We say that an observable state ω̃ is

“on the long-run path of σ” if there exists a state ω ∈ ΩC(σ, d(ω)) such that ω̃(ω) = ω̃. That is,

on-long-run path observable states are those that occur in the absorbing communicating class of σ.

Proposition 1 implies that there are well-defined long-run conditional beliefs π(σ, ω̃) ∈ ∆(Ω), given

by Bayes’ rule, for every on-long-run-path observable state ω̃. (∆(Ω) denotes the set of probability

distributions over Ω.) Given a strategy profile σ, buyers can use these beliefs to compute their

expected payoffs from choosing an auction and submitting a bid.

3.3 Stationary Equilibrium

We need to specify what it means for a strategy to be a best response. Let σ be the strategy profile

used by other players, and let p : Ω̃→ ∆(Ω) specify buyer i’s beliefs about the state conditional on

the observable state. Suppose buyer i with value x submits a bid b in auction j in observable state

ω̃. Then σ and p(ω̃) determine the buyer’s beliefs over future states, and specifically over other bids

in auction j. Let Mj denote the highest rival bid in auction j. If buyer i wins the auction, then

only the value of Mj affects his payoff. For each weakly lower bid m ∈ {0, .., b}, let gσ,p(m; ω̃, j, b)

denote the probability of the event that buyer i wins and that the highest rival bid submitted before

the auction closes (including bids submitted before or at the same time as b) is m. Buyer i wins

for sure when m < b, but he also wins when m = b and m is submitted after b. If buyer i loses

the auction and enters the losers’ pool, then what matters for his expected continuation value is

the state of the market in the period immediately following his loss. Let ωl denote this state and,

in what follows, we will refer to it as the losing state. For each ωl ∈ Ω, let hσ,p(ω
l; ω̃, j, b) denote

the probability of the event that buyer i loses the auction and that the losing state is ωl. These

winning and losing probabilities depend not only on the observable state, but also upon the buyer’s

auction choice and bid since they can affect the distribution over future states, and specifically over

other bids in auction j.

We now define a buyer’s payoffs. Given (σ, p), let v(x, ω;σ, p) : Ω → [0, x] be the expected payoff

to a buyer of type x who arrives at state ω and plays his optimal strategy (which depends only on

the observable component ω̃). Then define

ṽ(x, ω̃;σ, p) ≡
∑
ω∈Ω

v(x, ω;σ, p) · p(ω; ω̃)

as his maximized payoff when he arrives and observes ω̃, given conditional beliefs p(ω̃). His expected
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re-entry payoff if he loses and the losing state is ωl is given by

V (x, ωl;σ, p) ≡
∞∑
t=1

γ∆(1− γ∆)t−1

(∑
ω′∈Ω

P t−1([ωl, ω′];σ)v(x, ω′;σ, p)

)
. (1)

The term P t−1([ωl, ·]) gives the distribution over the state when the buyer returns after t periods

given the losing state ωl. The number of periods until he returns is itself random, and the term

γ∆(1− γ∆)t−1 represents its distribution.

We can now write down the Bellman equation for the type-x buyer. For each observable state

ω̃ ∈ Ω̃,

ṽ(x, ω̃, ;σ, p) = max
j∈{1,..,J},b∈B


∑

m∈{0,..,b}
(x−m) · gσ,p(m; ω̃, j, b)

+ (1− α)
∑
ωl∈Ω

V (x, ωl;σ, p)hσ,p(ω
l; ω̃, j, b)

 (2)

A bidder’s best response to (σ, p) is a stationary strategy that achieves these optimal values for

every observable state ω̃ ∈ Ω̃. A strategy is a best response to (σ, p) if it specifies a best response

for each value x ∈ X .

The first term in Expression 2 represents the payoff to a type-x buyer who wins auction j. The

summation is over the highest losing bid m, weighted by the probability of each such m. The

second term is the payoff to the buyer if he loses. Since the buyer does not actually observe ωl, the

summation is over the set of possible losing states, weighted by the probabilities of those states.

Note that, because the buyer either wins or loses,

∑
ωl∈Ω

hσ,p(ω
l; ω̃, j, b) = 1−

∑
m∈{0,..,b}

gσ,p(m; ω̃, j, b)

Overall, the second term in Expression 2 is the bidder’s continuation value (probability of losing,

times probability of not exiting, times expected re-entry payoff) given the observed state and the

buyer’s auction choice and bid.

Both the probability of losing and the expected re-entry payoff depend on b and j. The first

dependence is straightforward—how much the buyer bids in which auction affects the probability

that he wins. The second dependence is less obvious. It operates through two channels. First,

b and j may directly influence continuation play (and thus the re-entry payoff) by changing the

actions of future buyers who observe them. Second, the buyer’s expectation of his re-entry payoff

depends on the losing state, and different j’s and b’s lead to different distributions over ωl. For
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example, if the buyer submits a very high b and loses, then he may conclude that the losers’ pool

is likely to have lots of high types, and so his expected re-entry payoff is low. In contrast, if he

submits a low b and loses, then that event is not very informative about the underlying state, so

he becomes relatively more optimistic about his re-entry payoff. The observed state ω̃ also affects

the buyer’s beliefs about ωl. For example, if the buyer submits a bid and it is not the highest bid

submitted in that period, then he enters the losers’ pool in the following period, so ω̃ will be highly

informative of the losing state ωl.

Before defining an equilibrium, we need to define a conditional belief system. Recall that a strategy

profile σ induces an ergodic distribution π(σ, d) over states given d periods until the next auction

closes, which induces conditional beliefs π(σ, ω̃) at every observable state ω̃ ∈ Ω̃ that is on the

long-run path of σ. The challenge here is that σ does not pin down conditional beliefs at observable

states that are off-path, that is, not in the support of the ergodic distribution π(σ, d). Our approach

for dealing with this issue is to require that conditional beliefs be the limit of some sequence of

full-support strategies that converges to σ, as in sequential equilibrium.

Definition 1 A conditional belief system p is consistent with strategy profile σ if there exists a

sequence of full-support strategies {σk} such that (i) σk → σ, and (ii) π(σk, ω̃) → p(ω̃) for every

observable state ω̃ ∈ Ω̃.

Having defined best responses and consistent beliefs, we can now define an equilibrium.

Definition 2 An equilibrium is a (stationary) strategy profile σ∗ ∈ Σ and a conditional belief

system p∗ : Ω̃→ ∆(Ω) such that (i) σ∗ is a best response to (σ∗, p∗), and (ii) p∗ is consistent with

σ∗.

Proposition 2 An equilibrium exists.

Proof. See Appendix.

The proof involves showing that the set of conditional belief systems consistent with a strategy

profile σ is upper hemicontinuous in σ. We then use a standard fixed point theorem to establish

existence. In general, there may be multiple equilibria.

In estimation, we will use a somewhat broader equilibrium concept, ε-equilibrium. The existence

of an ε-equilibrium is implied by Proposition 2.
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3.4 An Approximation Result

The goal of this section is to provide a characterization of equilibrium bidding in thick markets.

The main idea is to leverage the fact that buyers do not return immediately after losing—it takes

some time for them to learn and respond to the news that they have lost and to bid again. As a

result, if the arrival rates of buyers and sellers are sufficiently high, then many buyers may have bid

and a large number of auctions may have closed between the time that a buyer loses and the time

that he returns. In these kinds of markets, a buyer’s re-entry payoff may be largely independent

of the losing state since, by the time he returns, the market has undergone so many transitions

that the effects of the losing state have dissipated. If this is the case, then the buyer’s continuation

value after losing depends only on his type, and not on his previous actions or on the observable

state. We look for an equilibrium that satisfies that condition, which greatly simplifies the buyer’s

bidding decision.

To see why, suppose that a type-x buyer’s expected re-entry payoff V (x;σ, p) does not depend on

the losing state. It would then follow from Expression 2 that the Bellman equation for a type-x

buyer becomes

ṽ(x, ω̃;σ, p) = max
j∈{1,..,J},b∈B


∑

m∈{0,..,b}
(x−m) · gσ,p(m; ω̃, j, b)

+ (1− α)

(
1−

∑
m∈{0,..,b}

gσ,p(m; ω̃, j, b)

)
V (x;σ, p)

 (3)

Proposition 3 Suppose that the expected re-entry payoff for a type-x buyer is V (x;σ, p), regardless

of the losing state ωl. Then the following bid is weakly dominant for type-x buyer given any strategy

profile and conditional beliefs (σ, p):

b(x) = x− (1− α)V (x;σ, p).

Proof. See Appendix.

The proposition states that each buyer should bid his value less his expected re-entry payoff. Since

the latter depends only on the buyer’s type, each type-x buyer submits the same bid regardless

of which auction he chooses and what the observed state is. We will refer to such a strategy as a

constant bidding strategy. Adachi (2016), Backus and Lewis (2019), and Bodoh-Creed, Boehnke,

and Hickman (2020) get the same optimal bid function, but in their models the standard weak

dominance argument for second-price auction applies. Our proof extends this argument to settings

in which a buyer’s bid can influence the bidding decisions of subsequent buyers in ways that can
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cause the probability distribution of the highest rival bid to change.

The challenge is to provide plausible conditions under which the expected re-entry payoff does not

depend on the losing state. One possibility is to take the return rate γ to 0 while holding the

number of open auctions J fixed. In that case, the expected return time is so far in the future

that the buyer might expect the re-entry state to be drawn from the steady state distribution.16

However, there is a subtle problem with that limit: all the buyers in the losers’ pool return at the

same rate, so they are likely to compete against each other when they return. Thus, the state of

the losers’ pool at the time that a buyer loses affects the expectation of his re-entry state even in

the limit as γ shrinks. That limit is also inconsistent with the data. Specifically, it implies that all

the open auctions will have closed (in fact, multiple cycles of open auctions will have opened and

closed) before the buyer returns. By contrast, in our application, many of the auctions that were

open when the buyer loses are still open when he returns. By the time a losing bidder returns to

bid again, on average over fifty other buyers have bid, but only six auctions have closed. Given

that the number of open auctions is over a hundred, this means that a returning bidder will see

mostly the same auctions he saw last time he bid.

An alternative limit, which is more plausible and which does deliver an expected re-entry payoff

that is independent of the losing state, is the following: fix the buyer’s expected return time and

the expected number of new buyers per auction, but thicken the market by increasing the arrival

rates for sellers and new buyers, letting the time between seller arrivals go to zero. Recall that we

normalized the time between seller arrivals as one unit of time. Therefore, in our model, we take

the above limit by letting the return rate γ shrink to zero while increasing the number of auctions,

J, so that γ · J is constant.17

In this limit, the expected number of auctions that will close before a loser returns (1/γ) gets

large, but the fraction of currently open auctions that will close before a loser returns ((1/γ)/J)

is constant. As a result, the expected return state is not independent of the losing state, because

most of the auctions open when the bidder loses will still be open when he returns. However, the

large numbers of auctions that close in the meantime imply that the effect of the losing state on

the bidder’s re-entry payoff will have largely washed away. Many buyers arbitraging across many

auctions mean, by a law of large numbers argument, that the losing state will not matter much

(except in extreme cases, as when a run of high value buyers have filled all open auctions with high

bids).

16This is the approach that the literature has taken and that we took in an earlier version of this paper.
17Suppose time is measured in terms of hours rather than time between seller arrivals. Fix the duration of each

auction at J∗ hours and the return rate of a buyer at γ∗ per hour. Let δ∗ denote the number of hours between seller
arrivals and let λ∗ be the arrival rate of a new buyer per hour. Then γ = γ∗δ∗, λ = λ∗δ∗, and J = J∗/δ∗. Letting δ∗

shrink to zero implies that γ → 0, J →∞, and γJ = γ∗J∗.
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That is, this limit does not imply that a losing buyer expects to face the steady-state distribution

of states when he returns, but it does imply that he expects to face the steady-state distribution

of re-entry payoff values. Arbitrage with lots of buyers and sellers implies that many states have

nearly the same value, so that the expected re-entry payoff can be independent of the losing state

even though the expected return state is not. However, for any fixed γ a constant bidding strategy

will not be exactly optimal, for at least two reasons. First, the expectation of what the value of

the state will be when a losing buyer returns does depend a little on the current observable state.

Second, the value of the losing bid and choice of auction do influence the actions of future bidders

a little bit. For both reasons, a bidder would want to “fine tune” his bid. As a result, an exact

equilibrium will not feature constant bids.

Instead, we consider a weaker solution concept, ε-equilibrium, in order to capture the idea that

buyers will ignore those details that vanish in the limit. We show that a constant bidding strategy

can be an approximate best response for any precision of approximation. For ε > 0, an ε-equilibrium

is a strategy profile where no buyer has a deviation that can improve his expected payoff by more

than ε. In our model, “expected payoff” means the steady-state expected payoff.18 Our main result

is stated in the following Theorem.

Theorem 1 Pick any ε > 0. Fix a sequence {γk, Jk}∞k=1 such that limk→∞ γk = 0 and γkJk is

constant. Then there exists a sequence of ε-equilibria {(σ∗k, p∗k)}
∞
k=1 such that for high enough k, (i)

each type of bidder x submits a single bid b∗k(x) on the equilibrium path, and (ii) b∗k(·) is increasing.

Proof. See Appendix.

The idea behind the proof of part (i) is to treat the buyer’s choice of auction as a sequence of

binary participation decisions in static auctions with a fixed outside option. We then construct a

constant bidding strategy profile for each γk and show that that strategy profile is an ε-equilibrium

for γk sufficiently small. More precisely, define an arbitrary function v0 : X → (0, x], representing

the value of the outside option for each type. Given v0, define

bk(x, v0) = x− (1− α)v0(x)

as the bid of each type-x buyer. Define arbitrary beliefs p0 that specify, for each observable state,

beliefs about the current highest bids w in the M next-to-close auctions, where M < Jk. Given

v0 and p0, we recursively construct a constant bidding strategy profile σk in which each buyer bids

18ε-equilibrium is widely used in game theory. As Mailath, Postlewaite, and Samuelson (2005) explain, the solution
concept captures the idea that a slight mis-specification of the underlying game should not cause the modeler to rule
out reasonable predicted outcomes. Similarly, ε-equilibrium is appropriate if players find it costly to compute the
optimal strategy, or if they believe that other players may make small mistakes.
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in one of the M next-to-close auctions (details in the appendix). Given such a strategy, on-path

steady state beliefs are pinned down by Bayes’ rule, and we can fill in off-path beliefs in a consistent

way; call the result p(σk). Similarly, σk determines the expected payoff in steady state to a bidder

of each type x; call that function v(σk). We look for a fixed point: a strategy profile that determines

steady-state payoffs and beliefs that in turn generates the same strategy profile. Let σ∗k be this

fixed point and call the corresponding payoffs v∗k(x).

We first prove that a fixed point σ∗k exists. We then prove that, fixing a large M and taking k to

infinity, for any type x, there is a high probability of arriving at a state where playing according

to σ∗k(x) gives at least (close to) v∗k(x), and submitting a bid in auction M + 1 or later gives payoff

no higher than (a value close to) v∗k(x). The idea is to make M large enough that arbitrage across

auctions (as in Burguet and Sákovics (1999)) equalizes expected payoffs, while making γk small

enough that a losing buyer expects that all of those M auctions will have closed before he returns.

The proof of part (ii) is a standard mechanism design argument.

The theorem says that we can pick ε > 0 as close to zero as we want, and make the value of

the “mistakes” that buyers make in best responding with a constant bidding strategy arbitrarily

small. At most observable states, the constant bid is almost but not quite optimal, so bidders may

be making small mistakes most of the time. At some unlikely extreme observable states, such as

those in which all M auctions have received multiple high bids or those in which none of the M

auctions have received bids, bidders may make large mistakes. But both kinds of mistakes have a

small effect on the expected payoff evaluated ex ante: neither a high probability of a small mistake

or a small probability of a big mistake affects the expectation much. Furthermore, these unlikely

extreme states are not states that we see in the data.

To summarize, we have shown that the constant bidding strategy is nearly optimal nearly all the

time, and increasing in type. As we shall see in the next section, these two properties are critical

to making the model useful for empirical work. Furthermore, our results do not depend upon the

length of a period or the bid increment. We can make these intervals arbitrarily small so that the

probability of ties shrinks to zero.

4 Empirical model

In what follows, we assume that the data are generated by an ε-equilibrium (σ∗, p∗) in which buyers

use a constant bidding strategy. Under this assumption, we obtain closed form solutions for the

value function and the (inverse) bid function and show that the latter can be expressed in terms of

bid distributions. We then show that our model is identified and outline a strategy for estimating
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the primitives of the model. Finally, we develop and discuss several tests of the model.

Given Theorem 1, a buyer’s type x can equivalently be represented by his bid, b∗(x). We follow

Backus and Lewis (2019) and refer to b∗(x) as type x’s “pseudotype.” The constant bidding result

allows us to aggregate across states. For each m ∈ {0, .., b∗}, define

gσ∗,p∗(m|b∗) =
∑
ω̃∈Ω̃

gσ∗,p∗(m|ω̃, j∗(ω̃; b∗), b∗))π̃∗(ω̃),

as the probability that pseudotype b∗ pays m in the set of auctions in which he chooses to bid and

wins, where π̃∗(ω̃) denotes the steady state probability of observable state ω̃ under σ∗ and j∗(ω̃; b∗)

denotes the auction chosen by pseudotype b∗ at ω̃. In order to simplify notation, we assume here

that the auction choice rule j∗ is a pure strategy, but none of our identification results below depend

on that assumption. Similarly, define

Gσ∗,p∗(m|b∗) =
∑

m∈{0,..,b∗}

gσ∗,p∗(m|b∗)

as the probability that he wins in those auctions. Note that b∗ plays two roles here: it accounts for

the set of auctions that type x selects and the bid he submits in those auctions.

Evaluating the Bellman equation (2) at j∗ and b∗ and taking expectations over ω̃ gives

∑
ω̃∈Ω̃

ṽ(x, ω̃;σ∗, p∗)π̃∗(ω̃) =
∑
ω̃∈Ω̃


∑

m∈{0,..,b∗}
(x−m)gσ∗,p∗(m|ω̃, j∗(ω̃; b∗), b∗))+

(1− α)

(
1−

b∗∑
m=0

gσ∗,p∗(m|ω̃, j∗(ω̃; b∗), b∗)

)
V (x;σ∗, p∗)

 π̃∗(ω̃)

Changing the order of summation on both sides, summing over ω̃, and solving for V , we obtain

V (x;σ∗, p∗) =
∑

m∈{0,..,b∗}

(x−m)gσ∗,p∗(m|b∗) + (1− α)(1−Gσ∗,p∗(m|b∗))V (x;σ∗, p∗)

=

∑
m∈{0,..,b∗}

(x−m)gσ∗,p∗(m|b∗)

[1− (1− α)(1−Gσ∗,p∗(m|b∗))]
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The numerator is the expected surplus of a buyer of type x in the set of auctions that he selects with

positive probability. The denominator is the proportionality factor that accounts for the possibility

that he can lose and return many times.

We use this expression for V to solve for the inverse bid function, which we denote by η. Substituting

V into the constant bid function from Proposition 3 and solving for x yields

η(b∗) = b∗ +

(
1− α
α

) ∑
m∈{0,..,b∗}

(b∗ −m)gσ∗,p∗(m|b∗) (4)

Thus, the private values of bidders can be obtained directly from data on their bids. It extends the

structural approach developed by Elyakime, Laffont, Loisel and Vuong (1994) and Guerre, Perrigne

and Vuong (2000) for estimating static, first-price auctions to a dynamic environment.

4.1 Identification and Estimation

Our data on buyers consists of their identities, their bids (including winning bids), the times at

which the bids are submitted, and the auctions in which the bids are submitted. Buyer identities

are crucial because they allow us to distinguish between new and returning buyers and to observe

who exited. We assume that the number of potential buyers (i.e, buyers who visit the platform)

is equal to the number of actual buyers (i.e., buyers who submit a bid). The justification for this

assumption is that, in our application, there is always an auction available that has not yet received

any bids and has a zero start price.

The unobserved model primitives are the entry, return and exit parameters (α, γ, λ) and the dis-

tribution of values, FE . Given data on bidder identities and participation, identification of the

parameters is straightforward : λ̂ is the average number of new buyers arriving per period, γ̂ is the

mean return time of a loser who does not exit, and α̂ is the fraction of losing buyers who exit. The

distribution FE is identified from Expression 4 which we can rewrite as

η(b∗) = b∗ +

(
1− α
α

)
Gσ∗,p∗(b

∗|b∗) [b− E(M |M < b∗, b∗)]

A non-parametric estimate of Gσ∗,p∗(b
∗|b∗) can be obtained by computing the fraction of auctions

in which pseudo-type b∗ bids and wins. Similarly, a non-parametric estimate of E[M |M < b∗, b∗] is

the average price that the pseudotype b∗ pays when he wins these auctions. Given these estimates,

we can use the sample of bids by new buyers to compute their values, and obtain a non-paramtric
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estimate of FE . Note that we can also use Expression 4 to derive estimates of the private values

of returning buyers, and use these estimates to obtain a non-parametric estimate of the stationary

distribution of values in the loser’s pool. We denote this distribution by FL and its probability

distribution by fL.

The remarkable aspect of our analysis is that FE is identified without solving for the equilibrium

selection rule. This result is due to the fact that each buyer type submits a single bid, regardless

of which auction he chooses or what the observable state is. This invariance property allows the

econometrician to use each buyer’s bid to directly infer his type, effectively conditioning on the set

of auctions she chooses in the data. However, this convenience comes at a cost: the econometrician

needs to observe the bids of every buyer and assume that they are realizations of pseudotypes. The

latter is a strong assumption since, in practice, some buyers pursue bidding strategies in which they

appear to submit bids that are less than their true pseudotypes. In our empirical work, we try to

deal with this issue by focusing only on the maximum bid submitted by a buyer in an auction and

interpreting this bid as her pseudotype. Nevertheless, bid censoring may still be a problem.

4.2 Tests

Our model generates several testable implications. These tests are important because they shed

light on the validity of our key approximations.

The first set of predictions concern bidding behavior. Bid functions need to be strictly increasing.

Since this is the case if and only if η is increasing, we can test for monotonicity by checking that,

our estimates of Gσ∗,p∗(b
∗|b∗) and E[M |M < b∗] imply that the expression on the RHS of equation

(4) is increasing. Second, if buyers are using a constant bid strategy, then buyers who lose and

return should bid approximately the same amount. The data on bidder identities allow us to track

the bids of buyers who lose and return and to directly test whether a buyer’s maximum bid is the

same across auctions. Since a buyer’s maximum bid may not be his pseudotype due to incremental

bidding, this test also provides information on the extent to which bid censoring is a problem.

The second set of predictions concern the restrictions implied by steady state. The number of

buyers flowing out of the loser’s pool must on average be equal to the flow entering the pool.

This condition implies that the expected number of returning buyers in the time between auction

closings is

γn =
(1− α)(λ− q)

α
, (5)
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where n denotes the steady state size of the losers’ pool and q is the probability that an auction

ends successfully with a sale. We test this condition using the data on bidder identities. Second,

and relatedly, the flow of x types out of the pool of losers must equal the flow of x types entering

the pool. On average, the flow of x types that leave the pool during the time between closings is

γnfL(x), where fL is the probability distribution of types in the loser’s pool. The flow back into

the pool over this time is on average

(1− α)[1−Gσ∗,p∗(b∗|b∗)][γnfL(x) + λfE(x)].

Equating these two flows yields

fL(x) =
λα(1−Gσ∗,p∗(b∗|b∗))

(λ− 1)[1− (1− α)(1−Gσ∗,p∗(b∗|b∗))]
fE(x). (6)

Equation (6) shows that, in steady state, the probability distribution of values in the losers’ pool

is a rescaling of the probability distribution of values of new buyers. The relationship reflects the

censoring due to auction outcomes. The scaling factor approaches 0 for very high types since they

are almost certain to win, and it approaches λ/(λ−1) > 1 for very low types who are almost certain

to lose. As a result, fL has more density than fE at low values and less density at high values.

As a final note before we turn to the empirical application, the previous analysis assumes the

buyer’s exit rate does not depend on her type. We provide empirical support for this assumption in

the data section below, but in Appendix F we also show that the model can be extended to allow

for endogenous exit.

5 Data

Our primary data consist of all eBay listings for iPads posted between February-September 2013,

obtained from eBay’s internal data warehouse. For each listing, the data contain information about

the seller (e.g. identity, feedback rating) and about the timing and characteristics of the listing (e.g.

start date, end date, starting bid, reserve price, shipping options, etc.). We also observe all of the

bids submitted for each listed item. Importantly, we observe the identities of all bidders and the

amounts and times of all bids they submitted, which allows us to track bidders who lose an auction

and return later to bid again in another auction. We also observe the bids submitted by winning

bidders, which are important for estimating Gσ∗,p∗ , the distribution of the maximum rival bid.
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We focus on the used market for a specific model: the 16GB WiFi-only iPad Mini. Since there

is some substitution between models (e.g. 16GB vs. 32GB) and between new vs. used items, one

might be concerned this definition of the market is too narrow. Substitution is indeed evident in

the bidding data: when buyers return to bid on a new item after having lost in a previous auction,

they do not always bid on the exact same model. However, among bidders who lost an auction for

a 16GB WiFi model, 83% of returning bidders chose to bid again on the same model. Among those

who switched to bidding on a different model, most either bid on the 32GB WiFi version (8%) or

on the 16GB WiFi+4G version (5%). Also, most buyers did not appear to view new and used items

as substitutes. Of the buyers who lost the bidding on a used item and returned to bid again, 79%

chose to bid on another used item. Of those who bid on a new item when they returned, only 6%

won. For buyers who bid on three or more items, the modal pattern was to bid exclusively on used

items, and the next most common pattern was to bid exclusively on new items. Thus, while there

is obviously some substitutability between models and item conditions, we believe it is a reasonable

approximation to treat the used 16GB WiFi market as its own separate market.

Treating the used market as separate also avoids the issue of how to model buyers’ willingness to

pay for new vs. used items. In the empirical analysis we use normalized bids to adjust for item

characteristics like color, added extras, and seller feedback ratings—an approach that implicitly

assumes these are characteristics that are valued uniformly across buyers (for example, all buyers

have the same willingness to pay for an extra charger). We doubt this assumption would hold with

respect to item condition: some buyers probably care a lot more than others about whether the

item is new vs. used.19

Our model assumes that buyers have unit demands. For iPads it seems reasonable that most buyers

would be interested in buying only one unit. However, a small fraction (less than 6%) of buyers

bought two or more units during the sample period. In the analysis below, we treat these buyers

as new bidders in the first auction they bid in, and as returning bidders in all subsequent auctions,

even if they had previously won an auction.

When a seller posts an item for auction on eBay, she chooses the starting price of the auction.

This starting price serves as a public reserve price, since the system only accepts bids above the

starting price. The seller also has the option of setting a secret reserve for a small additional fee,

but this option is rarely used—in our data only 10% of listed items had secret reserve prices. Many

sellers choose reserve prices that are clearly intended to be non-binding: 22% of listed items had

reserve prices below $1, and 41% had reserve prices below $180, which is the first percentile of the

distribution of final sale prices. Sellers also have the option to create a fixed price listing, in which

19In our analysis we only include used items that were fully functioning—i.e., we exclude items identified as “For
parts or not working.”
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case the price is fixed and the listing remains active on the site for up to 30 days until the item is

sold. For the specific product we are studying, auctions are the most common form of sale: 65%

of successfully sold items were sold by auction. In the analyses below we focus on auction listings

only.

Table 1 shows summary statistics for the 5,622 auction listings in our sample. The majority of these

listings ended successfully with a sale,20 and the average sale price (conditional on sale) was $288.86

with an average shipping fee of $7.33. The retail price for a new unit of this particular model was

$329, not including tax and shipping, so the used units on eBay were selling at an average discount

of at least 10% relative to the new retail price. The average number of bidders per auction is 9.27,

but this number varies substantially across auctions.

Table 1: Summary statistics for auction listings (N=5,622)

Percentiles
Mean Std. Dev. 0.10 0.50 0.90

Start price 141.89 119.48 0.99 150.00 295.95
Positive reserve price (0/1) 0.09 0.28 0.00 0.00 0.00
Reserve price (if positive) 274.53 42.75 220.00 280.00 325.00
Sale price (if sold) 288.86 31.32 255.60 290.00 325.00
Shipping fee 7.33 5.62 0.00 6.60 15.00
Number of bids 21.12 17.73 0.00 18.00 46.00
Number of unique bidders 9.27 6.40 0.00 9.00 18.00
Minutes since last auction 61.95 103.19 3.82 28.82 137.52
Cover included (0/1) 0.19 0.39 0.00 0.00 1.00
Seller feedback (#) 6,781.88 42,526.86 12.00 124.00 3,032.00
Seller feedback (% positive) 99.02 5.55 98.28 100.00 100.00

Even though we are looking only at auctions for a specific model (16GB WiFi), sale prices exhibit

considerable variation. Some of this variation reflects heterogeneity in item or seller characteristics,

such as color (white vs. black), included extras (like a case), and seller feedback ratings. Even after

controlling for observable characteristics, however, much of the variance in prices remains.

Items in our data rarely fail to sell, but in that event sellers have the option to come back and

try again. Unsold items can be re-listed, typically without having to pay any additional fees to

eBay. Among the items in our data that failed to sell, 63 percent appear to have been relisted,

based on subsequent appearance of an item with the same seller ID and the exact same product

title. Because sellers in our data typically set low reserve prices and the majority of auctions end

successfully with a sale, we focus on dynamics among bidders and largely ignore the seller dynamics.

20eBay requested that we not report the exact conversion rate, but it is higher than 85%.
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Our model also abstracts away from intra-auction dynamics, since buyers are assumed to bid when

they arrive, and bid exactly once in whichever auction they choose. Of the various simplifying

assumptions we make, this one is perhaps the most at odds with the data, since in reality “incre-

mental bidding” (submitting multiple, increasing bids within a single auction) is relatively common.

Roughly 44% of the bidders in our data submit multiple bids for the same item, but most of the

incrementing happens before the auction nears its closing time: only 7% of bidders submit multiple

bids in the last hour before the auction closes. The incremental bidding in the data could reflect

within-auction strategic behavior: some bidders may be trying to learn about their rivals through

incremental bidding, or even trying to influence the bidding decisions of subsequent bidders. Nev-

ertheless, since incorporating these considerations would complicate the model considerably, and

our goal is to keep the model as simple as possible, we estimate the model as though bidders submit

only one bid, which we take to be the highest bid they submitted in the auction.

The presence of incremental bidding also raises the important question of which bids to take

seriously when estimating the model, since it complicates inference about the true intended bids of

losing bidders. For instance, a bidder whose maximum intended bid is $150 might initially bid $50,

but then lose when another bidder submits a bid of $200. This bidder’s observed bid would then

lead to a large underestimate of her true valuation. Since this censoring problem is most severe

at low bids (because bid increments tend to be larger when the posted bid is low), and because

incremental bidding appears to be most common among low-value bidders, we address this problem

by simply excluding bids below $150 when estimating fE and fL in Section 6 below. Since $150

is well below the lowest winning bid we observe in the data, the logic is that such bids were not

serious bids: either they were initial bids submitted by incremental bidders, or they were submitted

by bidders whose valuations were too low to have any chance of ever winning an auction.

Even without incremental bidding, buyers in the the real-world marketplace might arrive, observe

the bidding in several auctions of interest, and then make a strategic choice about when to submit

their bids. While we cannot test for this directly, since we don’t observe users’ browsing behavior

prior to their bid submissions, we can at least check for irregular bunching in the timing of bids.

Contrary to what other studies using eBay data have found, we observe relatively little last-minute

bidding in our data. Less than five percent of bids were submitted within five minutes of the

auction’s close, and 58 percent of auctions were won by buyers who submitted their bids with more

than an hour remaining in the auction. More directly, our model implies that the time between

bids (across all auctions and bidders) should be exponentially distributed, and this appears to be

approximately true in the data, as shown in Figure 7 in Appendix G. There is slightly more density

near zero than would be consistent with an exponential distribution, but the difference is small.

One of the clearest implications of our model is that buyers use constant bidding strategies: if a
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buyer loses an auction and returns to bid again in a subsequent auction, we expect her to submit the

same bid. This is approximately true in the data. Looking at bidders’ bids in successive auctions,

there is a statistically significant upward trend, but it is small. That is, losing bidders tend to

bid more aggressively when they return, but the increase in the bid is only 35 cents on average.

Regressing bids on bidder fixed effects and the number of previous auctions lost, the bidder fixed

effects explain 87% of the variance in bids. This result also suggests that, for most buyers, the

maximum bid is approximately equal to the pseudotype.

6 Estimation

In this section we first explain how we obtain estimates of bidders’ arrival and exit rates (λ and α)

from the data. We then turn to our method for estimating the distribution of bidders’ valuations,

which is an adaptation of the method proposed by Guerre, Perrigne, and Vuong (2000) to a dynamic

setting.

6.1 Estimating bidder arrival and exit rates

Our theoretical model assumes for simplicity that the interval between seller arrivals (or equivalently

auction closings) is constant, and the arrival rate of buyers is the measured relative to this period.

In reality, the arrival rates of sellers and buyers differ by time of day in predictable ways, so one

possible concern is that these differences influence bidding behavior. However, we find that even

though the number of auctions that close varies substantially by time of day, the number of bidders

per auction closing is approximately the same, as shown in Table 2. The implication is that sellers’

and buyers’ arrival rates vary proportionally by time of day, so the assumption of constant arrival

rates is a harmless normalization. This also means that thinking of time in terms of auction closures

(i.e., one unit of time equals one auction closing) is approximately correct. We therefore estimate

λ, the arrival rate of new buyers, as the average number of new buyers per auction closing, which

is 5.47.

Conditional on losing an auction, 49.8% of bidders come back to bid again in a subsequent auction.

Our estimate of the exit rate, α, is thus 0.502.21 Return times are fairly short: conditional on

returning to bid again, 21% of bidders return within an hour, and 10% return within 5 minutes.

The full distribution of return times is highly skewed, however, since there is a long right tail

21We say a bidder returned if she comes back to bid again within three weeks. Changing the time horizon, e.g. to
two weeks or four weeks, has little impact on our estimate of α, since most bidders return relatively quickly if they
are going to return at all.
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Table 2: Bidders per auction closing, by time of day

Percentiles
Time block Mean Std. Dev. 0.10 0.50 0.90

00:00-06:00 8.31 6.13 0 8 18
06:00-12:00 9.23 6.40 0 9 18
12:00-18:00 9.40 6.43 1 9 18
18:00-24:00 9.29 6.41 1 9 18

reflecting bidders who take 24 hours or more to come back.22

Although our model can be extended to allow for endogenous exit, as shown in Appendix F, our

baseline model assumes exit is independent of the bidder’s type. Since we observe bidders’ bids

and also whether they exit, we can estimate an exit function α(b) to see if exit rates appear to

depend on bidders’ types. Figure 1 shows binned exit frequencies along with a semi-nonparametric

estimate of α(b). Exit rates are relatively flat with respect to bidders’ types—at least over the

relevant range. Bidders who submit very low bids are more likely to exit, but these bidders are

not especially relevant in the model. Adjusting their value functions to reflect a higher exit rate

is unimportant: their value functions are essentially zero anyway, since they have virtually no

chance of winning an auction. There is a slight uptick in exit rates for high-value bidders, perhaps

because these bidders elect to purchase at retail when they lose an auction, and adjusting for this

difference might be more important. However, the differences in exit rates are small, and allowing

for endogenous exit makes computing counterfactuals meaningfully more difficult, so we use the

inverse bid function from the simpler model with exogenous exit when we estimate the distributions

of bidders’ valuations below.23

6.2 Estimating the distribution of bidders’ valuations

The primary objective of our empirical analysis is to recover FE , the distribution of buyers’ valua-

tions. Since we can distinguish in the data between bidders who are bidding for the first time and

bidders who are returning to bid after losing in a previous auction, we can estimate FE using the

bids of new bidders. Monotonicity of the bid function b∗(x) (which we discuss below) means we can

treat a bidder’s bid as her pseudotype, and recover her true type with the inverse bid function given

22Some of the losing bidders return to purchase an item on eBay at a fixed price, but this is rare: we find that only
1% of losing bidders do this.

23Since we can estimate the α(b) function, estimating the model with endogenous exit is not much more difficult
than with exogenous exit. However, when simulating counterfactuals in a model with endogenous exit, we must
compute a new equilibrium in which value functions accurately reflect exit functions and exit functions are optimal
given the value functions.
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Figure 1: Exit rate as a function of bid
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by equation (4). This inversion requires estimates of the exit rate, α; the probability of winning,

Gσ∗,p∗(b
∗|b∗); and the expected price conditional on winning, E(M |M < b∗, b∗).

An important detail is that the items auctioned in our data are not perfectly identical. We adopt

the conventional approach in the empirical auctions literature of working with normalized bids.

We regress prices on item characteristics, Z, and then use the estimated coefficients γ̂ from this

regression to normalize bids as b̂ = b−Zγ̂. These normalized bids then reflect the bids that would

have been submitted if all auctions were for items with identical observed characteristics. The

normalizing regression includes indicators for color (white vs. black); indicators for whether the

auction included a cover, keyboard, screen protector, stylus, headphones, and/or extra charger;

seller feedback ratings; shipping fee; and month dummies (to control for a gradual downward trend

in prices over time). In all that follows, when we refer to bids we mean normalized bids.

Estimating Gσ∗,p∗(b
∗|b∗) is relatively straightforward, since it is simply the probability of winning

at a bid equal to b∗. One could estimate this function by simply running a probit or logit regression

of a win dummy on bids. To avoid the functional-form restrictions such an approach would impose,

we instead use the semi-nonparametric maximum likelihood method of Gallant and Nychka (1987),

approximating the latent density with a 6th-order Hermite polynomial.

The last component of the inverse bid function is the conditional price expectation E(M |M <

b∗, b∗). We estimate this by constructing a dataset of winning bids and the prices (second-highest

bids) associated with those winning bids, and then running a local polynomial regression of the

latter on the former. Note that by estimating the expected price conditional on winning with a bid

equal to b∗, we are again implicitly accounting for the dependence of M on b∗.

29



As noted above, buyers’ strategic selection of which auctions to enter could in principle cause

the bid function to be non-monotonic. With estimates of α and the functions Gσ∗,p∗(b
∗|b∗) and

E(M |M < b∗, b∗), we can compute the bid function and directly check monotonicity. Figure 2 shows

the estimated bid function, which is indeed monotonic. This means we can invert the observed bids

and estimate the distribution of bidders’ underlying valuations using a dynamic analogue to the

method proposed by Guerre, Perrigne, and Vuong (2000). Applying our inverse bid function to

the observed bids, we recover a set of pseudo-values; we then estimate the distributions of these

pseudo-values nonparametrically with a kernel density estimator.

Figure 2: Estimated bid function
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Figure 3 shows kernel density estimates of fE and fL.24 The difference between the estimated

densities is consistent with the model: the distribution of returning losers’ valuations looks like a

resampling of new bidders’ valuations, with less density in the upper tail. It is important to note

that this difference is in no way imposed by our estimation procedure: since we can distinguish

between new and returning bidders in the data, we simply estimate separate distributions for the

two groups.

Before moving on to tests of the model and counterfactual analyses, we note that our estimates

imply that dynamic incentives have a quantitatively meaningful impact on bidding. Most previous

studies using eBay data have implicitly assumed that buyers are bidding myopically, interpreting

the auction price as a realization of a second-order statistic from the distribution of valuations.

But in a dynamic framework buyers submit bids below their true values, due to the option value

24Even though there is positive density on very low valuations, we plot the estimates for values above $200, since
low-value bidders have virtually zero probability of winning and are essentially irrelevant.
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Figure 3: Estimated distributions of valuations, using all bids
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of losing. Since this option value is largest for buyers with high values—the buyers whose bids

determine the final prices—estimates based on an assumption of static bidding may substantially

understate both the level and the dispersion of buyers’ true values. A static model of bidding

would especially mis-estimate the upper tail of the distribution of bidder values. For our sample,

we estimate that the winning bidder’s true value (x) is on average roughly $7.56 higher than the

bid she submitted, and in some cases over $25 higher.

6.3 Tests of over-identifying restrictions

Our model implies specific relationships between arrival rates of new and returning bidders as well

as the distributions of the two groups’ values. Because we observe in the data whether a bidder is

new or returning, we can estimate these arrival rates and distributions separately for each group.

That is, we do not need to impose the restrictions implied by the model; we can instead treat them

as testable implications.

Equation (5) implies that the number of returning buyers per auction should be given by

γn̄ =
(1− α)(λ− q)

α
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where q represents the probability that an auction ends with a sale.25 The size of the loser pool, n̄,

is not observable, but γn̄ is observable: it is the average number of returning bidders per auction,

which is 4.86 in the data. Our estimates of the exit rate α (0.50), the arrival rate of new bidders λ

(5.47), and the probability of sale q predict an average of 4.58 returning bidders per auction, which

is not far off.26

Equation (6) describes a more stringent test of the model’s underlying stationarity assumption:

not only should the numbers of bidders flowing into and out of the loser pool be equal on average,

but the flows should be equal at every type x. This puts a restriction on the relationship between

the densities fE and fL, as expressed in equation (6) above.

Figure 4 shows a comparison between the fL we estimate directly from the data and the fL implied

by the model (as a function of the estimated fE). The two densities are clearly not identical, but

they are remarkably similar given that nothing in the test forces them to look the same. In principle,

the rescaling of fE in equation (6) could distort the shape of the resulting fL and even cause it to

not integrate to one. The test should fail if the model is simply incorrect, or if the estimates of λ,

α, and/or Gσ∗,p∗(b|b) are inaccurate or invalid.

Figure 4: Test of restriction on fL
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Taken together, we view the results of the various tests in this section as reassuring evidence that

the simplifying assumptions of our model are reasonably consistent with the true data-generating

process.

25This probability is very high in our data, but eBay preferred that we not publish its exact value.
26Re-arrival times in the data imply a value for γ of approximately 0.01, which would imply the average size of the

loser pool is between 450-500.
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6.4 Auction selection

As noted in Section 2, a key distinction of our model compared to the prior literature is that it

allows buyers to endogenously choose in which auction to bid: buyers with different valuations

will not only submit different bids, they will choose different auctions in which to bid. This

means that the distribution of the maximum rival bid depends on the buyer’s type, so we are

careful in our estimation procedure to condition on the set of auctions chosen by bidders of type

b∗ when computing Gσ∗,p∗(b
∗|b∗) and the expected price conditional on winning, E(M |M < b∗, b∗).

By contrast, in a model with random matching of buyers to auctions one could simply use the

unconditional distribution of the highest rival bid, which is equivalent to the distribution of the

winning bid under the assumption of Poisson arrivals. This is the approach taken by Adachi (2016)

and Bodoh-Creed et al (2020), for example.

To check whether the distinction is quantitatively important, we can compute and plot bidders’

estimated continuation values under both assumptions, as shown in Figure 5. Ignoring auction

selection leads to a substantial overestimate of bidders’ continuation values, especially for high-

value bidders. Our estimation strategy does not require us to model buyers’ actual auction selection

rules, but the discrepancy shown in Figure 5 indicates the importance of using a method that allows

for auction selection instead of simple random matching.

Figure 5: Estimated continuation values: selection vs. random matching
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Accounting for auction selection Assuming random matching

Random matching is also inconsistent with some other basic patterns in the data. For instance,

price distributions in the data are roughly invariant to the number of bidders in the auction, as

shown in Table 3. If assignment of bidders to auctions were random, we would expect the mean
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Table 3: Price distributions: data vs. random matching

% of auctions Average prices Std. deviations
# of bidders Data RM∗ Data RM Data RM

0-3 12.61 18.56 269.71 268.15 32.11 20.96
4-6 18.17 70.52 274.92 275.03 28.02 15.43
7-9 16.79 10.74 275.13 280.31 27.09 13.91
10-12 16.75 0.18 276.37 283.20 26.15 6.71
13+ 35.67 0.00 277.29 – 24.00 –
∗ RM represents a simulation with random matching of bidders to auctions, with
censoring of bidders who are outbid before their turn (so the table reports the
number of bidders whose bids would have been observed).

price to increase with the number of bidders in an auction, and the standard deviation of prices to

decrease. To highlight this, the table compares averages and standard deviations from the data to

those from a simulation in which bidders (with valuations drawn from our estimated distribution)

arrive randomly and are assigned to bid in the next-to-close auction when they arrive. We discuss

this simulation in more detail in Section 7 below, but one important feature for the present purposes

is that bidders assigned to a given auction bid sequentially in a random order, so some bidders are

outbid before their turn. Consistent with the Bodoh-Creed et al (2020) model, we assume these

bidders are censored: the table shows the number of bidders who would have been observed in

the data. With this mechanism we would expect average prices to increase with the number of

observed bidders, and the standard deviation to decrease substantially as well. Instead what we

observe in the data is that average prices are fairly flat with respect to the number of bidders,

and the standard deviation of prices declines much less sharply with the number of bidders than it

would under random matching.

Another implication of the random matching models is that the winning bid and price in an auction

are first and second order statistics from the set of buyers assigned to bid in that auction. However,

while it is reasonable to assume that bidders arrive to the platform randomly, our data make it clear

that bidders do not simply bid in the auction that is next to close when they arrive. In fact, we find

that 79.9% of bidders submit their bids in auctions that are not the next to close. Furthermore,

these are not merely low-value bidders submitting irrelevant bids: 19.8% of them submit bids in

their chosen auctions that are higher than the posted bid in the next-to-close auction they chose to

pass up, and 9.6% submit bids that were even higher than the eventual price of the auction they

passed up. Thus, the order statistics from the sample of bidders who arrive in any given period are

distributed across auctions.
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7 Counterfactual analyses

In this section we present counterfactual analyses that examine the effect of dynamic competition

on efficiency and prices. The dynamics result from losing bidders’ ability to return and bid again

in later auctions, which has two effects. First, it increases the level of competition in each auction

because the number of bidders includes both new and returning bidders. We refer to this as the

dynamic participation effect. Second, buyers bid less. Anticipating the possibility of returning to

a later auction, they shade their bids to reflect the option value of losing. We refer to this as the

dynamic bidding effect.

These two effects are related but distinct. The dynamic bidding effect requires buyers to be

forwarding-looking. If buyers bid myopically—i.e., in a way that ignores the option value of losing—

then there is no dynamic bidding effect, but the dynamic participation effect is still present. Also,

the dynamic participation effect clearly enhances efficiency: it lowers the fraction of inefficient

trades, since high-value bidders who lose can still win an item, and their ability to return also

makes it more difficult for low-value buyers to win. By contrast, the dynamic bidding effect has no

impact on efficiency. If all buyers are forward-looking, they shade their bids in a way that amounts

to a monotone transformation of their types. Thus, the dynamic bidding effect only affects transfers

between the buyer and seller (i.e., prices).

7.1 Efficiency

Our first set of counterfactuals measure the efficiency of the eBay mechanism relative to two bench-

marks. One benchmark is the efficient allocation. The theoretical models developed by Satterth-

waite and Shneyerov (2007, 2008) predict that a decentralized, dynamic market converges to the

Walrasian equilibrium in the limit as the market dynamically thickens—i.e., as the period length

shrinks to zero so that traders have infinitely many opportunities to trade. The natural question

to ask about a real-world decentralized, dynamic market like eBay is how close its stationary state

comes to delivering the Walrasian equilibrium.

To evaluate the extent to which dynamics in the eBay marketplace yield convergence toward the

efficient market outcome, we begin by using our estimates to calculate the market-clearing price

P ∗ that would prevail if the units in our data were sold in a uniform price auction. This is the

price that would clear the market if eBay were to pool all buyers and pool all sellers and conduct

a single uniform auction. Specifically, we calculate the total number of sellers Ns = 5, 002 and

total number of buyers Nb = 27, 380 in our data, and then compute the market-clearing price as

the
(

1− Ns
Nb

)
= 81.7th percentile of the estimated distribution FE . Since this is the competitive
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equilibrium price and allocation, it serves as the main benchmark against which to compare the

prices and efficiency of other mechanisms.

The second benchmark is motivated by the matching process that occurs in brick and mortar

markets. In these markets, the matching is determined by the physical locations of buyers and

sellers: buyers have to buy from a local seller, and a seller has to sell to local buyers. Online

platforms create thicker markets at any moment by eliminating location as a factor in the matching

process. But they also make the market large over time by allowing buyers who fail to purchase to

return to the market in a later period and try again with a different seller. Our aim is to measure

the efficiency gains that result from this pooling of buyers and sellers over locations and time.

We address this by considering a counterfactual in which the Ns sellers hold separate second-price

auctions with no reserve price, and the Nb buyers are randomly allocated to those auctions, each

buyer getting only one chance to win an auction. In other words, the sellers are local monopolists,

and demand is stochastically the same in each local market. This counterfactual tells us what

the price distribution would be and how inefficient the allocation would be in the absence of any

dynamic effects. We simulate outcomes under this benchmark by taking Nb buyers, with valuations

drawn randomly from our estimated FE , and randomly assigning them to Ns auctions, taking the

averages from 10,000 repetitions in order to minimize any noise introduced by the simulation draws.

Table 4 shows prices and efficiency measures for the actual bidding we observe in the data compared

to the two counterfactual benchmarks. We calculate the market-clearing price to be $279.45. In

the market-clearing (efficient) equilibrium, all buyers with valuations above the market-clearing

price successfully purchase, and the average gross surplus of these buyers is $307.73. At the other

extreme, under simultaneous auctions with no dynamics, the price distribution exhibits considerable

dispersion, and only 31% of the buyers who should get the item (i.e., buyers with valuations above

the market-clearing price) actually do. The outcome we observe in the data is naturally in between

these two extremes. It falls well short of complete convergence to the competitive equilibrium:

price dispersion is still substantial, and we calculate that only 59% of the highest-value buyers

successfully win an auction.

These results resemble those of Bodoh-Creed et al (2020), who conduct a counterfactual welfare

exercise very similar to ours. They find a larger welfare loss relative to the efficient market-clearing

benchmark (14%), but also point out that the eBay mechanism achieves three quarters of the

potential welfare gain relative to a lottery that randomly allocates items to bidders.27 They also

show that meaningful increases in efficiency can be achieved by selling items in uniform auctions

27If we make the same calculation for our data, we find that the eBay mechanism achieves 88% of the potential
welfare gain of market-clearing over a random lottery.
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Table 4: Prices and efficiency compared to counterfactual benchmarks

Simultaneous auctions, Sequential auctions, Market clearing
static bidding dynamic bidding

(i.e., data)

Average price 231.22 275.39 279.45
SD of prices 70.88 26.85 0.00
Average gross surplus 283.39 293.84 307.73
Prob(win |x > P ∗) .305 .594 1.000

Notes: Average gross surplus is the average valuation (x) of the winning bidders. Prob(win |x > P ∗) is
the probability that a buyer whose x is greater than the market-clearing price P ∗ wins an auction before
exiting.

of small batches—e.g., auctioning four or eight units at a time, instead of one at a time—without

going all the way to a single uniform auction.

The efficiency differences shown in Table 4 between the data and the inefficient benchmark (simul-

taneous auctions with no dynamics) can be attributed entirely to the dynamic participation effect,

since the dynamic bidding effect has no impact on efficiency. Interestingly, virtually all of the price

differences also result from the dynamic participation effect. The dynamic bidding effect implies

that the bids we observe in the data, and resulting prices, are shaded down. For the highest-value

buyers, the difference between the bid and the true value can be substantial—but for the buyers

who end up setting the prices, the differences are apparently small. If we calculate the prices we

would have observed if buyers had bid their values directly, we find that the average price would

have increased by only $0.80, and the standard deviation would only have increased by $0.65.

7.2 Posted Bid vs. Sealed Bid Auctions

One potential explanation for the relative inefficiency of the outcome we observe in the data is

endogenous matching. As explained previously, buyers allocate themselves across auctions in a way

that is clearly nonrandom, instead choosing auctions to arbitrage differences in expected payoffs.

To explore how much this matters for prices and efficiency, we consider a counterfactual in which

the platform posts the closing times of the auctions, but does not provide any information about

the state of bidding in any of the auctions. In other words, the auctions are sealed bid auctions.

Each buyer observes the closing times of the available auctions, chooses one, and then waits until

the end of the auction to learn whether she is a winner or a loser and, if she has won, the price

she has to pay. In that setting, there is an epsilon equilibrium where buyers always bid in the
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soonest-to-close auction.28

Proposition 4 Suppose the auctions are sealed bid auctions. Pick any ε > 0. Fix a sequence

{γk, Jk}∞k=1 such that limk→∞γk = 0 and γkJk is constant. Then there exists a sequence of ε-

equilibria {(σ∗k, p∗k)}∞k=1 such that for high enough k, each type of bidder x always chooses the

soonest-to-close auction upon arrival and submits a bid equal to

b∗(x) = x− (1− α)V (x;σ∗, p∗)

where

V (x;σ∗, p∗) =

∑
m∈{0,..,b∗}

(x−m)gσ∗,p∗(m)

[1− (1− α)(1−Gσ∗,p∗(m))]
.

In this equilibrium, the random arrival times of buyers implement a random allocation of buyers

to sellers. The argument is straightforward: a buyer cannot gain by deviating and choosing a later

auction because her rivals do not observe her deviation and, given their soonest-to-close choice

strategy, the level of competition is the same in every auction. As a result, each buyer is indifferent

as to which auction to join, so there is no selection effect. The buyers’ continuation values (and

bids) are determined by the distribution of the highest rival bid among the new and returning

buyers assigned to the auction which, in our model, consist of the buyers who arrive during the

period in which that auction is the soonest to close. In steady state, this distribution does not vary

across auctions. Thus, this equilibrium is a dynamic version of the equilibrium in the RM models,

and the one that the previous structural literature has estimated.

We simulate equilibrium outcomes for a sequence of 10,000 auctions,29 with the number of new

buyers arriving before each auction being a draw from the Poisson distribution with a mean that

matches the data (λ̂ = 5.47). New buyers’ valuations are drawn randomly from the estimated FE .

Losing bidders exit with probability α̂ = 0.502, and otherwise enter a pool of losers. After entering

28Under the assumption that buyers use stationary strategies, the outcome in Proposition 4 is in fact an exact
equilibrium. That assumption, though, is very restrictive in a sealed bid environment where the only public infor-
mation is the auction closing times. The proposition holds if we drop that assumption and allow buyers to condition
on their private history, and it holds regardless of what information about outcomes the platform releases when an
auction closes.

29To get 10,000 auctions, we simulate 30,000 and then drop the first and last 10,000. We drop the first 10,000 to
ensure that we are sampling from auctions in steady state; we drop the last 10,000 auctions because for late-arriving
buyers we cannot observe their eventual outcomes (e.g., whether they eventually succeed in winning an auction). At
the start of the simulated sequence, we seed the loser pool with k̄ = λ̂(1−α)/(αβ̂) buyers whose valuations are drawn
from FE .
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the loser pool, a bidder has a probability γ̂ = 0.008 of returning to bid each period,30 where each

period has one auction. When a buyer arrives, she is assigned to the soonest-to-close auction. This

selection rule is analogous to the inefficient benchmark from Table 4, in the sense that buyers’

random arrivals lead them to be randomly matched to auctions, except that in this case they are

able to return to try again if they lose. Note that while the simulations can be conducted in type

space—i.e., assignment of bidders to auctions and determination of who wins can be done based on

their actual valuations—in order to compute bids (and prices) we need to find the new equilibrium

continuation value function V induced by the counterfactual. The details of how we do this are

explained in Appendix H.

Table 5 shows the comparison of outcomes. The sealed bid auction significantly reduces price dis-

persion and increases efficiency relative to the outcome in the data. With buyers randomly matched

to auctions, but participating dynamically, 72 percent of the highest-value buyers successfully win

an auction, as opposed to the 59 percent from the data. This happens because high-value buyers

are less likely to end up in auctions where they are bidding against other high-value buyers, and

therefore they are also less likely to exit. In steady state, there are more high-value buyers and

they are spread more evenly across auctions, which reduces price dispersion and improves allocative

efficiency.

Table 5: Prices and efficiency under alternative auction selection rule

Actual Next-to-close
selection rule selection rule

(data) (simulation)

Average price 275.39 274.02
SD of prices 26.85 16.65
Average gross surplus 293.84 301.86
Prob(win |x > P ∗) 0.594 0.717

Notes: Results in column 2 are based on a simulation in which bidders enter the
next-to-close auction when they arrive, which means they are randomly assigned
to auctions. Average gross surplus is the average valuation (x) of the winning
bidders. Prob(win |x > P ∗) is the probability that a buyer whose x is greater
than the market-clearing price wins an auction before exiting.

30We estimate γ as the inverse of the mean number of auctions before a losing bidder returns in our data, since if
re-arrivals are a Poisson process then return times should be exponentially distributed.
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7.3 Convergence

In our third counterfactual, we examine whether the equilibrium of our dynamic model would

converge to the efficient outcome as the exit rate (α) goes to zero, and whether the dynamic bidding

effect would be large if the exit rate were near zero. Note that to conduct these counterfactuals, we

need to specify an auction selection rule: we cannot simply use the arrivals and re-arrivals observed

in the data, because changing α fundamentally changes the re-arrival process. We use the same

auction selection rule described above, assigning bidders to the soonest-to-close auction when they

arrive.31

Table 6 shows that as α declines, average prices increase, and dispersion decreases. But even with

an exit rate of 0.10, prices do not come close to complete convergence. By contrast, efficiency does

come reasonably close to the market-clearing benchmark. When the exit rate is 0.10, the average

gross surplus (average valuation of winning bidders) is almost as high as under market-clearing, and

85 percent of the highest-value bidders succeed in winning an auction. Note that as the exit rate

gets small, the number of bidders per auction increases, because any given auction will have many

returning bidders. (In the simulations with α = 0.10, the average number of bidders per auction

is 46.) This is the dynamic participation effect, and its main impact on prices is to eliminate low

prices, because it makes it difficult for low-value bidders to be the price-setters. The table shows

that this effect is significant: the lowest prices when α = 0.10 are close to the median price when

α = 0.50.

By contrast, the main impact of the dynamic bidding effect should be to eliminate high prices.

Low-value buyers have continuation values near zero, since they are so unlikely to ever win; so for

them the dynamic bidding effect is negligible. But high-value buyers’ higher continuation values

lead them to shade their bids toward the market-clearing price. The table shows prices that would

result under myopic bidding—i.e., if buyers directly bid their values—to indicate the magnitude

of the dynamic bidding effect. When α = 0.10, the effect is significant—for example, the highest

prices are $33 lower than they would be in its absence—but there is still substantial price dispersion

above the market-clearing price. This can also be seen by looking at the bid functions, which are

shown in Figure 6. In the limit as α −→ 0, buyers with values above the market-clearing price

submit bids equal to that price. When α = 0.10, we find that the highest-value buyers substantially

reduce their bids, but still submit bids well above the market-clearing price. Thus, while a lower

exit rate would lead the dynamic bidding effect to be meaningfully larger than what we observe in

the data, it still would not deliver complete price convergence.

31If we use alternative rules that are homogeneous—meaning the rule that assigns bidders to auctions does not
depend on the bidder’s type—the results are essentially unchanged.

40



Table 6: Price distributions for different exit rates

α = 0.50 α = 0.10
Dynamic Myopic Dynamic Myopic
bidding bidding bidding bidding

Price percentiles:
.01 219.73 219.77 270.89 271.41
.10 254.28 254.65 276.00 277.09
.50 275.78 277.74 282.33 284.84
.90 291.43 297.17 287.96 298.98
.99 308.16 324.58 292.46 325.35

Average gross surplus 301.86 301.86 306.55 306.55
Prob(win |x > P ∗) 0.717 0.717 0.868 0.868

Notes: These results are based on simulations in which bidders choose the soonest-to-close auction
in which their valuations exceed the posted bid. Dynamic bidding means buyers shade their bids
to reflect their continuation values; myopic bidding means they simply bid their values.

Figure 6: Counterfactual bid functions
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Taken together, these findings suggest that in real-world markets, convergence to the Walrasian

price may occur more quickly from below than from above. Even a moderate amount of dynamic

participation can mostly eliminate prices below the Walrasian price, but high prices aren’t entirely

eliminated even when buyers anticipate having a large number of opportunities to trade. Inter-
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estingly, this means that the average price in a decentralized market may be above the Walrasian

price, as is the case in our simulations when α = 0.10.

8 Discussion and Conclusions

In contrast to the early literature on online auction marketplaces, recent papers have explicitly

incorporated dynamics into models of bidding behavior. We view our study as making three

contributions to this nascent literature. First, the model we propose is simple and empirically

tractable, while still capturing the important dynamic aspects of the bidding environment. The

key result is an approximation result: in thick enough markets, it is approximately optimal for a

buyer’s bid to be invariant to the choice of auction and the observed state. This is what makes the

model empirically tractable, and it is in some ways analogous to the oblivious equilibrium concept

proposed by Weintraub et al (2008), which simplifies the analysis of dynamic games in markets

with a large number of firms. Relying on this approximation result is reasonable in thick markets

like the one we study, since the large number of auctions and bidders leads to a high rate of churn

in the state. We believe this approach will likely be useful in many markets, but we caution that

it is less suitable in thin markets.

The second main contribution of our analysis is to highlight the importance of accounting for buyers’

endogenous selection of which auction to bid in. On the one hand, our modeling approach allows us

to identify the model’s primitives without actually solving for equilibrium auction selection rules.

On the other hand, there is an important sense in which we must control for auction selection. To

recover the primitive distribution of buyers’ valuations we use a dynamic version of the technique

proposed by Guerre et al (2000), in which inverting the bids requires an estimate of the distribution

of maximum rival bids. When estimating this distribution, it is critical to condition on the auctions

in which buyers of a given type choose to bid. In other words, one cannot simply use an estimate

of the unconditional distribution of maximum rival bids; it is necessary to estimate the distribution

of rival bids that a buyer faces in the auctions in which he chooses to bid. Hence, while it is not

necessary to explicitly model how buyers are choosing auctions, it is necessary to condition on their

actual choices when estimating key quantities from the data.

The third main contribution of the paper is to show the quantitative impact of dynamic competition

on prices and efficiency. Relative to an environment in which buyers can only bid once, the option

to return and try again after a losing bid leads to two main effects. The dynamic participation

effect comes from a mechanical increase in competition, as the presence of returning buyers inflates

the number of buyers per auction. The dynamic bidding effect comes from buyers strategically
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shading their bids to reflect the option value of losing and potentially trying again. Our counter-

factual simulations indicate that both effects are quantitatively meaningful, but that the dynamic

participation effect appears to have a more substantial impact—not just on allocative efficiency,

which is unaltered by the dynamic bidding effect, but also on prices. This finding is reminiscent

of the famous result of Bulow and Klemperer (1996) that adding a bidder has more impact on

revenues than changes to auction design. In our case, the mere presence and participation of re-

turning bidders is more impactful than the strategic changes in bids that result from buyers’ ability

to return.
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A State transitions

The transitions for an auction j that does not close at the end of the current period (i.e., dj(t) > 1)
are as follows.

� If auction j receives no bids in period t, then wj(t + 1) = wj(t), rj(t + 1) = rj(t), and
aj(t+ 1) = aj(t).

� If auction j receives exactly one bid bj from a buyer i with value x in period t, then there are
two possible transitions:

– If bj > wj(t), then wj(t + 1) = bj , rj(t + 1) = wj(t), and aj(t + 1) = x; the displaced
bidder with value aj(t) enters the losers’ pool with probability 1−α and otherwise exits.

– If bj ≤ wj(t), then wj(t+ 1) = wj(t), rj(t+ 1) = bj , and aj(t+ 1) = aj(t); buyer i with
value x enters the losers’ pool with probability 1− α and otherwise exits.

� If auction j receives bids from multiple buyers in period t, then there are three possible
transitions. Let bj be the maximum of the bids, submitted by bidder i with value x, and let
b′j denote the second-highest.

– If b′j > wj(t), then wj(t+ 1) = bj , rj(t+ 1) = b′j , and aj(t+ 1) = x; the displaced bidder
with value aj(t) enters the losers’ pool with probability 1−α and otherwise exits, as do
the buyers other than i.

– If bj > wj(t) ≥ b′j , then wj(t)1) = bj , rj(t+ 1) = wj(t), and aj(t+ 1) = x; the displaced
bidder with value aj(t) enters the losers’ pool with probability 1−α and otherwise exits,
as do the buyers other than i.

– If bj ≤ wj(t), then wj(t + 1) = wj(t), rj(t + 1) = bj , and aj(t + 1) = aj(t); each of the
arriving buyers enters the losers’ pool with probability 1− α and otherwise exits.

The transitions for an auction j that closes at the end of the period (i.e., dj(t) = 1) are as follows.

� If auction j receives no bids in period t, then the high bidder with value aj(t) exits.

� If auction j receives at least one bid, then there are two possible transitions. As above, let bj
be maximum of the bids, submitted by bidder i with value x, and, if there are multiple bids,
let b′j denote the second-highest.

– If b′j > wj(t), then bidder i with value x exits; the displaced bidder with value aj(t)
enters the losers’ pool with probability 1−α and otherwise exits, as do the buyers other
than i.

– If bj ≤ wj(t), then the high bidder with value aj(t) exits; all other bidders enter the
losers’ pool with probability 1− α and otherwise exit.
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B Proof of Proposition 1

Our proof relies on standard results about Markov chains on a countable state space. (See, for
example, Meyn and Tweedie (1993).) First, we show that Φ(σ, d) has a unique absorbing com-
municating class; call it ΩC (σ, d). Second, we show that the Markov chain confined to that class,
ΦC (σ, d), is ergodic. The proposition follows.

The following lemma immediately implies that Φ(σ, d) has a unique absorbing communicating class.

Lemma 1 State (0,∅,0,0, d) is recurrent under Φ (σ, d).

Proof. We will show that starting from any state, the process reaches the empty state (0,∅,0,0, d),
where there are no active buyers and no bids in any open auction, with probability 1. Consider the
total number of buyers in the losers’ pool, n(t). The probability that such a buyer reenters over
the next T periods (the length of an auction) is 1 − (1− γ4)T . The expected number of buyers
who leave the losers’ pool over T periods, then, is at least

α
(
n
[
1− (1− γ4)T

]
− J − 1

)
:

the returning losers, minus the J + 1 spots available as high bidders in open auctions (J auctions
are open at a time, and at most one new auction can open up over T periods), times the probability
of exit α.

The expected number of buyers entering the losers’ pool over T periods is at most (λ+ J) (1− α):
the expected number of new bidders arriving, plus the J high bidders at period t, times the
probability 1− α that a losing bidder enters the losers’ pool rather than exiting. Thus, whenever

n(t) >
(λ) (1− α) + J

α
[
1− (1− γ4)T

] ,
n is falling on average over the next T periods. Pick an

n∗ >
(λ) (1− α) + J

α
[
1− (1− γ4)T

] ,
and it follows from the law of large numbers that any n > n∗ will reach a state less than or equal
to n∗ with probability 1.

Starting from any state ω0 ∈ Ω(d) such that n ≤ n∗, the probability of reaching (0,∅,0,0, d) is
bounded below by L (n∗), defined as follows: the probability (γ∆α)n

∗
that n∗ losers enter in the

current period and exit if they do not win an auction, times the probability
(
e−λ∆

)JT
= e−λJ that

no new bidders enter over the next JT periods until all the current auctions close and the state
hits d again.

Thus, the process reaches (0,∅,0,0, d) with probability 1: the set of states satisfying n ≤ n∗ is
reached infinitely often, and the probability of reaching (0,∅,0,0, d) from any state in that set is
bounded below by L (n∗) > 0.
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Lemma 1 implies that the unique absorbing communicating class of Φ(σ, d), ΩC(σ, d), is the set of
states that communicate with (0,∅,0,0, d).

Define the Markov process ΦC(σ, d) with state space ΩC(σ, d) as having the same transition prob-
abilities as Φ(σ, d), restricted to ΩC(σ, d). As constructed, ΦC(σ, d) is irreducible and recurrent.
It therefore has a unique invariant distribution π(σ, d). And because the empty state (0,∅,0,0, d)

follows itself under P T (σ) with probability at least
(
e−λ∆

)T
= e−λ (the probability that no new

buyers enter over the next T periods until the state hits d again), ΦC(σ, d) is aperiodic.

Because ΦC(σ, d) is aperiodic with a unique invariant distribution, it is ergodic. Lemma 1 then
immediately implies that Φ(σ, d) is ergodic as well, with the same invariant distribution.

C Proof of Proposition 2

The proof mirrors Kreps and Wilson’s (1982) existence result for sequential equilibrium, which in
turn relies on Selten’s (1975) result for extensive form trembling hand perfect equilibrium. The
idea is that the limit of Nash equilibria of a sequence of perturbed games where each action must
be played with positive probability is an equilibrium in our setting.

For any small ε > 0, define the ε-perturbed game Γε as our model with the restriction that each type
of buyer must choose each possible action with probability at least ε at every observable state. It is
straightforward to show that a Nash equilibrium of Γε exists using Kakutani’s fixed point theorem:
a pure strategy is a function from the finite set X × Ω̄ to the finite set {1, . . . , J} × B, so the set
of mixed strategies satisfying the ε restriction is a compact, convex subset of a finite dimensional
simplex. Expression 2 is continuous in the strategies of other players σ and conditional beliefs p,
so the best response correspondence is upper hemicontinuous in σ and p. Given a full-support
strategy σ, every observable state ω̃ is on the long-run path, so all conditional beliefs π(σ, ω̃) are
pinned down by Bayes’ rule. Those conditional beliefs are continuous in σ, because for each d the
stationary distribution π(σ, d) is continuous in σ. Thus, the mapping from σ to best responses is
upper hemicontinuous, and Kakutani’s fixed point theorem applies.

Then take a sequence {εn} of εn > 0 converging to 0, and a sequence {σ∗n} of Nash equilibria of Γεn .
The set of strategy profiles is compact, so without loss of generality assume that {σ∗n} converges to
a limit σ∗. As noted above, conditional beliefs are continuous in σ, so the sequence of conditional
beliefs {π(σ∗n, ω̃)} also has a limit; call it p∗. We want to show that (σ∗, p∗) is an equilibrium. First,
the upper hemicontinuity of the best response correspondence ensures that σ∗ is a best response to
(σ∗, p∗). Similarly, to establish that p∗ is consistent with σ∗, it is enough to show that the set of
conditional belief systems consistent with a strategy profile σ is upper hemicontinuous in σ.

That argument is straightforward: for any strategy profile σ and conditional belief system p, take
a sequence {σn, pn} such that (i) σn → σ, (ii) pn → p, and (iii) for each n, pn is consistent with
σn. We want to show that p is consistent with σ. By definition, for each n there exists a sequence
of full-support strategies {σn,k}k such that as k →∞, σn,k → σn and π(σn,k, ω̃)→ pn(ω̃) for every

observable state ω̃ ∈ Ω̃. Define the sequence {σ′k, p′k} by σ′k = σk,k and p′k = pk,k. By construction,

σ′k → σ and π(σ′k, ω̃)→ p(ω̃) for every observable state ω̃ ∈ Ω̃, so we conclude that p is consistent
with σ.
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Thus, (σ∗, p∗) is an equilibrium.

D Proof of Proposition 3

For now, suppose that b(x) is a feasible bid; that is, that b(x) ∈ B. Because the bid that a buyer
submits in an auction may influence the actions of future bidders who arrive before the auction
closes, the argument that b(x) is weakly dominant is slightly more complicated than in the case of
a static second price auction. The key observation is that a buyer’s bid b can affect future bidders’
behavior only through the observable state. Because only the second highest current bid r is visible,
b is observed only when the highest competitor’s bid exceeds b.

Suppose that the buyer submits a bid in period t in an auction that will close after d more periods.
For s ∈ {t, . . . , t+ d}, let Xs denote the highest competitor’s bid in the auction up through period
s. Let {xt, . . . , xt+d} denote the realized increasing sequence of highest competing bids if the buyer
submits a bid of b(x). If the buyer submits a bid of b(x) and xt+d > b(x), then the buyer loses
the auction and gets expected continuation payoff (1−α)V (x;σ, p). If xt+d < b(x), then the buyer
wins the auction, pays xt+d, and gets payoff x − xt+d > x − b(x) = (1 − α)V (x;σ, p). And if
xt+d = b(x), then depending on timing and tie-breaking, the buyer either loses the auction and
gets continuation payoff (1−α)V (x;σ, p), or wins the auction, pays xs+d, and gets the same payoff:
x− xt+d = x− b(x) = (1− α)V (x;σ, p).

Next consider a bid b > b(x). There are three cases. If xt+d < b(x), then the outcome is the
same as with a bid of b(x): the buyer wins the auction, pays xt+d, and gets payoff x − xt+d. If
xt+d = b(x), then again both bids give the same payoff: with a bid of b, the buyer wins and gets
payoff x − b(x) = (1 − α)V (x;σ, p). A bid of b(x) may win or lose, but the payoff is x − b(x) =
(1− α)V (x;σ, p) either way. Otherwise (if xt+d > b(x)), let

s ≡ min {s ∈ {t, . . . , t+ d} |xs > b(x)} ,

and let
{
xt, . . . , xs, x

′
s+1, . . . , x

′
t+d

}
denote the realized increasing sequence of highest competing

bids if the buyer submits a bid of b. (Note that the sequence is the same as under b(x) up until
the first period that a competing bid strictly exceeds b(x); up until then the observable second
highest bid is the same.) In this case, a bid of b(x) loses, and the buyer gets continuation payoff
(1 − α)V (x;σ, p). A bid of b gives a weakly lower payoff: if x

′
t+d > b, the buyer loses and gets

(1 − α)V (x;σ, p). If x
′
t+d ∈ (b(x), b), then the buyer wins and gets payoff x − x′t+d < x − b(x) =

(1−α)V (x;σ, p). Finally, if x
′
t+d = b, then the buyer may either lose and get payoff (1−α)V (x;σ, p)

or win and get payoff x − x′t+d = x − b < (1 − α)V (x;σ, p). Thus, bidding b(x) always gives a
weakly higher payoff than bidding b > b(x) and sometimes a strictly higher payoff.

Finally, consider a bid b < b(x). If xt+d < b, then the outcome is the same as with a bid of b(x):
the buyer wins the auction, pays xt+d, and gets payoff x − xt+d. Otherwise, bidding b(x) gives a
weakly higher payoff than bidding b. If xt+d = b, then by submitting b(x) the buyer wins, pays
b, and gets payoff x − b > x − b(x) = (1 − α)V (x;σ, p). With a bid of b, the buyer may win and
get payoff x− b, but also may lose and get only the continuation payoff (1− α)V (x;σ, p). Finally,
if xt+d > b, then a bid of b loses, and the buyer gets continuation payoff (1 − α)V (x;σ, p). A
bid of b(x) gives a weakly higher payoff: if xt+d ∈ (b, b(x)), then the buyer wins and gets payoff
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x − xt+d > x − b(x) = (1 − α)V (x;σ, p). If xt+d ≥ b(x), then win or lose a bid of b(x) gives the
buyer a payoff of (1 − α)V (x;σ, p). Thus, bidding b(x) always gives a weakly higher payoff than
bidding b < b(x) and sometimes a strictly higher payoff.

The arguments above generalize to show that for any bids b′′, b′ ∈ B such that either b′′ > b′ ≥ b(x)
or b(x) ≥ b′ > b′′, bidding b′ weakly dominates bidding b′′. Thus, if bidding exactly b(x) is not
feasible – that is, if b(x) /∈ B – then any bids other the the closest feasible bids just below and
above b(x) are weakly dominated.

E Proof of Theorem 1

We first construct the strategy profile and then show that it is an ε-equilibrium. By construction,
the strategies satisfy condition (i) of the theorem (each type uses a constant bid). The last step is
to show condition (ii), that the bids are increasing in the bidder’s type.

E.1 Constructing the strategy σ∗M,J

For any integer M ≥ 1, define an M -horizon strategy profile as one that specifies that each type
of bidder at each state 1) chooses to submit a bid in one of the M next-to-close auctions, and 2)
bases his choice of auction and bid only on the observable state of those M auctions. That is, an
M -horizon bidding strategy profile is a mapping from X × BM × {1, . . . , T} to B × {1, . . .M}.

Pick an M , and let J be greater than M . We will construct an M -horizon constant bidding strategy
profile σ∗M,J by looking for a fixed point: a payoff function together with a strategy profile for other
types and beliefs about bids will determine the strategy for each type, which will in turn determine
steady-state payoffs and beliefs.

First, define an arbitrary function v0 : X → (0, x̄], representing the payoff for each type. Given
v0, define the net value xnet (x, v0) ≡ x − (1− α) v0 (x) for each type; the bid that a buyer of
type x will submit, b (x, v0), is the closest feasible bid to xnet (x, v0). Next, define an arbitrary
conditional belief system p0 with the property that beliefs about the vector of highest bids w in
the M next-to-close auctions depend only on the vector of highest losing bids r in those auctions.
(When players use M -horizon strategies, later auctions will not have any bids yet.) Finally, define
a one-period-ahead belief function r0 : BM × {1, . . . , T} → 4BM that specifies beliefs about what
next period’s vector of M highest losing bids will be as a function of this period’s vector.

Given v0, p0, and r0, we construct the corresponding consistentM -horizon strategy profile σM,J (v0, p0, r0)
recursively as follows. Bidders arrive and see 1) the number of periods remaining in the next to
close auction d, and 2) the vector r of highest losing bids for each of the next M auctions. We
start with behavior in the next-to-close auction (j = 1), first when it has one period remaining
(d = 1) and then for higher values of d. For each d we specify behavior as the equilibrium of a
particular simultaneous-move game. Then we do the same for the next auction (j = 2), and so on
up to j = M .

� Step j = 1, d = 1: Start with auction 1, the next to close, with one period remaining.
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Arriving buyers have beliefs given by p0 (r, d = 1) about the highest standing bid in that
auction, w1. Define a hypothetical static game where the (random) set of players equals the
buyers who arrive in that period, and a player of type x can either 1) submit a bid of b (x, v0)
in auction 1, or 2) not bid. The payoffs of the hypothetical game to a type-x player are
as follows: the payoff to not bidding is v0 (x). If he submits a bid, and b (x, v0) is higher
than any competing bid (from among the bids by other players arriving that period, plus the
realized standing high bid w1 drawn from p0 (r, d = 1)), then he gets the usual auction payoff:
x minus the highest competing bid. If he submits a bid that is not the highest, then he gets a
payoff of (1− α) v0 (x). Ties are broken as in the Model section. A Nash equilibrium of that
hypothetical game exists – use it to define for each type of buyer the probability of bidding
in auction 1 when d = 1 under σM,J (v0, p0, r0). (If the equilibrium is not unique, select one
arbitrarily.)

� Step j = 1, d = 2: Next we define the probability of bidding in the next-to-close auction
for a buyer who arrives when that auction has two periods remaining. Arriving buyers have
beliefs given by p0 (r, d = 2) about the highest standing bid in auction 1, w1. Define another
hypothetical static game where, again, the set of players are the buyers who arrive this period,
and a type-x player can either 1) submit a bid of b (x, v0) in auction 1, or 2) not bid and get
a sure payoff of v0 (x) instead. The difference from the previous step is the function mapping
bids to payoffs: because auction 1 will still be open in the next period, the behavior of bidders
arriving then will affect payoffs. In defining the expected payoffs of this step’s hypothetical
static game, we treat the behavior of next period’s arriving buyers as exogenous. Specifically,
next period’s buyers will submit bids in this auction according to the strategies determined
in Step j = 1, d = 1, so the players in this period need to have beliefs about what the vector
of highest losing bids, r′, will be next period. The new second highest bid in auction 1 will
be determined by the actions of the current bidders, together with the standing high bid w1.
Beliefs about the new second highest bids in the other auctions are given by the one-period-
ahead belief function r0 (r, d = 2). After next period’s bids are submitted, auction 1 closes,
and this period’s bidders get the corresponding realized payoffs: the winning bidder gets a
payoff equal to his type x minus the highest competing bid, and a losing bidder of type x
gets payoff (1− α) v0 (x). An equilibrium of this hypothetical game exists – use it to define
the probabilities of bidding in auction 1 when d = 2 under σM,J (v0, p0, r0).

� Steps j = 1, d = 3 through d = T : We iterate the process above in order to specify the
probability of bidding in the next-to-close auction for a buyer who arrives when that auction
has three or more periods remaining. Arriving bidders have beliefs given by p0 (r, d) about
the highest standing bid in auction 1, w1. Define a hypothetical static game where, again, the
set of players are the buyers who arrive this period, and a type-x player can either 1) submit
a bid of b (x, v0) in auction 1, or 2) not bid and get a sure payoff of v0 (x) instead. Buyers
arriving in the remaining periods before auction 1 closes will submit bids in this auction
according to the strategies determined in the previous steps. Next period’s second highest
bid in auction 1 will be determined by the actions of the current bidders, together with the
standing high bid w1. Beliefs about next period’s second highest bids in the other auctions are
given by the one-period-ahead belief function r0 (r, d). The actions of next period’s buyers will
then determine the new second highest bid in auction 1 in the period after that, and beliefs
about that period’s new second highest bids in the other auctions are given by applying the
one-period-ahead belief function r0 (r′, d− 1) to next period’s vector of highest losing bids,
r′. Continue that process to predict future bids in auction 1 until the auction closes, and
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this period’s bidders get the corresponding realized payoffs: the winning bidder gets a payoff
equal to his type x minus the highest competing bid, and a losing bidder of type x gets
payoff (1− α) v0 (x). An equilibrium of this hypothetical game exists – use it to define the
probabilities of bidding in auction 1 for each d between 3 and T under σM,J (v0, p0, r0).

Under the strategies described above, some buyers choose not to submit a bid in auction 1. For
those buyers, we next specify in a similar way their decision whether or not to participate in auction
2, the second in line to close.

� Step j = 2, d = 1: Start with the case where auction 1 has one period remaining. Arriving
bidders have beliefs given by p0 (r, d = 1) about the highest standing bid in that auction, w2.
Think of the hypothetical static game where the set of players are those who 1) arrive this
period and 2) in the equilibrium of Step j = 1, d = 1 chose not to bid. (This set of players is
doubly random. The initial arrival of buyers is exogenously random, and then the strategies
of whether or not to bid in auction 1 are potentially mixed.) In this hypothetical game too,
each type-x player can either submit a bid of b (x, v0) in auction 2, or not bid and get a
payoff of v0 (x). In the next period, this auction will become the next-to-close with d = T , so
we can determine the expected payoffs of the hypothetical game as we did for Steps j = 1,
d = 3 through d = T . An equilibrium of this hypothetical game exists – use it to define the
probabilities of bidding in auction 2 when d = 1 under σM,J (v0, p0, r0).

� Steps j = 2, d = 2 through d = T : Next we define the probability of bidding in auction 2 for
a buyer who arrives when auction 1 has two periods remaining. Arriving bidders have beliefs
given by p0 (r, d = 2) about the highest standing bid in that auction, w2. Define a hypothetical
static game where, again, the set of players are those who 1) arrive this period and 2) in the
equilibrium of Step j = 1, d = 2 chose not to bid. Again, each type-x player can either
submit a bid of b (x, v0) in auction 2, or not bid and get a payoff of v0 (x). Buyers arriving
in the remaining periods before this auction closes will submit bids in this auction according
to the strategies determined in the previous steps. Next period’s new second highest bids in
auctions 1 and 2 will be determined by the actions of the current bidders, together with the
standing high bids w1 and w2. Beliefs about next period’s second highest bids in the other
auctions are given by the one-period-ahead belief function r0 (r, d = 2). The actions of next
period’s buyers will then determine the new second highest bids in auction 1 (until it closes)
and auction 2 in the period after that, and beliefs about that period’s new second highest bids
in the other auctions are given by applying the one-period-ahead belief function r0 (r′, d− 1)
to next period’s vector of highest losing bids, r′. Continue that process to predict future bids
in auction 2 until the auction closes, and this period’s bidders get the corresponding realized
payoffs. An equilibrium of this hypothetical game exists – use it to define the probabilities of
bidding in auction 2 for each d between 2 and T under σM,J (v0, p0, r0).

Finally, we repeat that process to construct the probabilities of bidding in each auction 3 through
M − 1 for each d between 1 and T under σM,J (v0, p0, r0). For each d, let σM,J (v0, p0, r0) specify
that any buyer who does not submit a bid in one of the first M − 1 bids in auction M .

Those T×(M − 1) steps tell us how to construct σM,J (v0, p0, r0) given values v0, conditional beliefs
p0, and one-period-ahead belief function r0. We then look for a fixed point. Given a strategy σM,J ,
on-path steady-state conditional beliefs are pinned down by Bayes’ rule, and off-path beliefs can
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be specified in a consistent way so that 1) beliefs about the vector of highest bids w in the M
next-to-close auctions depend only on the vector of highest losing bids r in those auctions, and 2)
beliefs assign probability one to an off-path bid being the minimal feasible bid compatible with the
observable state. Given a strategy σM,J and conditional beliefs pM,J , the value of the one-period-
ahead belief function is pinned down at each observable state; call the result r (σM,J , pM,J). The
strategy σM,J also determines the expected payoff in steady state to a bidder of each type x; call
that function v (σM,J). Then the M -horizon constant bidding strategy profile σ∗M,J that we want
is one that satisfies the following property: we can find a payoff function v∗M,J , conditional beliefs
p∗M,J , and a one-step-ahead function r∗M,J such that

1. σ∗M,J = σM,J

(
v∗M,J , p

∗
M,J , r0

)
;

2. v∗M,J = v
(
σ∗M,J

)
;

3. p∗M,J is consistent with σ∗M,J ; and

4. r∗M,J = r
(
σ∗M,J , p

∗
M,J

)
.

A fixed point argument paralleling the proof of Proposition 2 establishes that such a σ∗M,J exists
for any M and J .

E.2 Showing that σ∗M,J is an ε-equilibrium

We next establish that if M is large enough given any ε > 0, and k is large enough given ε and
M (so that γk is close to 0 and Jk is large), then the σ∗M,Jk

defined above is an ε-equilibrium. Let
v∗M,Jk

and p∗M,Jk
be the corresponding payoff function and conditional belief system. In Lemma 2,

we show that conditional on choosing one of the next M auctions, a bid of b
(
x, v∗M,Jk

)
is nearly

optimal for a buyer of type x. Lemma 3 completes the proof by showing that choosing one of the
M next-to-close auctions is in fact nearly optimal with very high probability under the steady state
distribution.

As a preliminary, we note that it is without loss of generality to assume that the sequences{
σ∗M,Jk

, p∗M,Jk
, v∗M,Jk

}∞
k=1

are such that the transition probabilities over the state of the next M auctions (bids and high
bidders’ types) converge. The set of M -horizon constant bidding strategy profiles is compact, as is
the set of beliefs over the state of the next M auctions; any sequence of those strategy profiles and
beliefs thus has a convergent subsequence. Along that subsequence the behavior of each type of
buyer converges. To show that the transition probabilities converge, we also need to show that the
arrival rates of each type of buyer converge. The arrival rates of new buyers are fixed with respect
to k by assumption. Finally, although the distribution over the size of the losers’ pool n does not
converge, we do get convergence (at least along a subsequence) if we normalize the numbers of each
type in the losers’ pool, n(x), to γkn(x). Let n̄k denote the steady-state size of the losers’ pool.
Then the steady-state expected number of returning losers each period n̄kγk4 is bounded above
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by λ4 (1− α) /α, because over time the inflow into the losers’ pool comes from new buyers who
lose an auction and do not exit (rate bounded above by λ (1− α)), while the outflow comes from
those losers who return and either win an auction or lose and exit (rate at least nγkα). Given that
normalization, conditional beliefs at on-path observable states converge as well.

We now state and prove the two lemmas. Define

v̂ (j, b; ω̃, σ, p) ≡


∑

m∈{0,..,b}
(x−m) · gσ,p(m; ω̃, j, b)

+ (1− α)

(
1−

∑
m∈{0,..,b}

gσ,p(m; ω̃, j, b)

)
V (x;σ, p)


as the expected payoff to submitting bid b in auction j at observable state, given (σ, p).

Lemma 2 Fix M , and pick any observable state ω̃ with the feature that only the M next-to-close
auctions have received bids. Then for any type x and auction j ≤M , we have

lim
k→∞

∣∣∣∣max
b∈B

v̂
(
j, b; ω̃, σ∗M,Jk

, p∗M,Jk

)
− v̂

(
j, b
(
x, v∗M,Jk

)
; ω̃, σ∗M,Jk

, p∗M,Jk

)∣∣∣∣ = 0.

Proof. We first show that given such an observable state ω̃, in the limit the expected re-entry
value is independent of the buyer’s choices of b and j and also independent of ω̃. It therefore equals
the unconditional expectation, v∗M,Jk

(x). That is, we show that for any type x, bid b, and auction
j ≤M , we have

lim
k→∞

∣∣EV (x, ω̃;σ∗M,Jk
, p∗M,Jk

, j, b
)
− v∗M,Jk

(x)
∣∣ = 0,

where

EV (x, ω̃;σ, p, j, b) ≡

∑
ωl∈Ω

V (x, ωl;σ, p)hσ,p(ω
l; ω̃, j, b)∑

ωl∈Ω

hσ,p(ωl; ω̃, j, b)

is the expectation of the re-entry payoff conditional on having submitted bid b in auction j at
observable state ω̃, losing, and entering the losers’ pool.

As γk → 0, the buyer’s return time is arbitrarily far in the future with arbitrarily high probability,
so the probability of the event that no buyers arrive as M consecutive auctions go by before the
buyer returns goes to 1. That event implies that the choice of b and j ≤ M can have no further
effect on the observable state (no active bid has been placed by a bidder who saw the buyer’s
choices, or by a bidder who saw a bid placed by a bidder who saw the buyer’s choices, and so on)
and thus can have no effect on the actions of other buyers.

As noted above, when k grows the Markov chain over the state space with the normalized size
of the losers’ pool converges, and in particular conditional beliefs at on-path observable states
and the transition probabilities over the state of the next M auctions (bids and high bidders’
types) converge. Because that limit process is ergodic (Proposition 1) and the number of on-path
observable states is finite, if the number of periods before the buyer re-enters is high enough, then
beliefs over what the state at re-entry will be are close to the stationary distribution, conditional
on any observable state when the buyer enters the losers’ pool. As γk → 0, the re-entry time is
very high with very high probability. Therefore, for high enough k the distribution of the re-entry
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state and thus the expected re-entry payoff are independent of the observable state ω̃ when the
buyer chooses b and j.

Because the expected continuation value conditional on losing for a buyer of type x is very close
to (1− α) v∗M,Jk

(x), regardless of which of the next M auctions the buyer chooses or which bid

he submits, the arguments of Proposition 3 imply that b
(
x, v∗M,Jk

)
≈ x − (1− α) v∗M,Jk

(x) is an

optimal (or nearly optimal) bid to submit in any of the next M auctions.

Lemma 2 establishes that because a buyer who has chosen one of the first M auctions faces an
approximately constant continuation value after losing, an approximately optimal bid in any of
those auctions is his value minus his continuation value. In Lemma 3, we show that one of those
M auctions is nearly always a nearly optimal choice. By construction of the strategy profile σ∗M,Jk

,
a type-x buyer who chooses one of the first M − 1 auctions expects to get at least v∗M,Jk

(x). The
only way to get less is if he turns down all of the first M −1 auctions; in that event, under σ∗M,Jk

he
bids in auction M even if it yields a low expected payoff. That event, though, is very unlikely for

large M . (Note that Lemma 2 still applies in that event: the bid b
(
x, v∗M,Jk

)
is optimal in auction

M even when auction M is a sub-optimal choice.)

We will use the following notation in the formal statement of Lemma 3: given a scalar η > 0 and an
M -horizon constant bidding strategy profile σ with corresponding payoff function v, let Ωη (σ, v)
be the set of states at which for each buyer type x, 1) playing according to σ gives an expected
payoff no lower than v(x)− η, and 2) submitting a bid in auction M + 1 or later gives an expected
payoff no higher than v(x) + η. Let π (Ωη (σ, v) |σ) denote the steady-state probability of state in
Ωη (σ, v) under σ.

Lemma 3 For any η > 0,

lim
M→∞

lim
k→∞

π
(
Ωη
(
σ∗M,Jk

, v∗M,Jk

)
|σ∗M,Jk

)
= 1.

Proof. First consider the hypothetical static game in Step j = 1, d = 1, where at observable

state ω̃ a type-x buyer decides between submitting a bid of b
(
x, v∗M,Jk

)
≈ x− (1− α) v∗M,Jk

(x) in

an auction that will close at the end of the period or getting a sure payoff of v∗M,Jk
(x). That game

corresponds to the following second-price auction environment: the same random set of bidders,

but a bidder of type x gets gross payoff xnet
(
x, v∗M,Jk

)
= x − (1− α) v∗M,Jk

(x) from winning the

auction, and has an outside option of αv∗M,Jk
(x) from not participating. (That is, both the payoff

from winning and the value of the outside option are measured as the surplus over the continuation
value (1− α) v∗M,Jk

(x).) The auction has a hidden reserve price equal to the standing high bid w1,
distributed according to p∗M,Jk

(ω̃).

Equilibrium behavior in the hypothetical game thus is equivalent to the outcome of that auction:
bidders choose optimally whether or not to participate in the auction, and if they participate they
bid their valuation. From Myerson (1981), we know that the expected payoff from an auction to a
bidder with valuation v is given by the integral up to v of the probability of winning for each bid,
P
(
xnet

)
. In the hypothetical static game, then, the payoff to a type-x player who chooses to bid
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can be written as

(1− α) v∗M,Jk
(x) +

xnet
(
x,v∗M,Jk

)∫
0

P (xnet)dxnet.

In the auction, the probability that a bidder wins equals the probability that his net value exceeds
the standing high bid w1and that no other bidder with a higher net value participates (with a small
adjustment for the possibility of a tie).

The hypothetical static games constructed in the other steps are similarly equivalent to auctions.
That equivalence is less obvious when a buyer decides whether or not to participate in an auction
that will not close until a later period, because in principle the buyer’s bid could influence the
entry choices of buyers who arrive in the future. In fact, though, because only the highest losing
bid is observed, his bid can influence future behavior only in the case where he has already lost.
Thus, the set of competitors that the buyer will face is effectively exogenous. In each step of the
definition of σ∗M,Jk

, the expected payoff from submitting a bid in any of the first M − 1 auctions is
a function of the probability that the bid exceeds the standing high bid and that no bidder with a
higher net value enters that auction.

We can now establish that for each type x, playing according to σ∗M,Jk
(x) gives at least (close to)

v∗M,Jk
(x) with high probability in the limit. The strategy profile σ∗M,Jk

specifies that a type-x buyer
bids with positive probability in the earliest auction j that gives him an expected payoff of at least
v∗M,Jk

(x) (as long as there is such an auction among the next M −1 auctions). Submitting a bid in
auction j lowers the expected value of that auction for future buyers, all else equal, and so lowers
their equilibrium probability of participating in auction j and pushes them toward later auctions.
Thus, under σ∗M,Jk

, v∗M,Jk
(x) is the long-run average payoff to a type-x buyer, and he expects to

get at least v∗M,Jk
(x) if he participates in one of the first M − 1 auction. He can get less only if all

M auctions would yield an expected payoff below v∗M,Jk
(x) – that is, if the expected distribution

of the numbers of bidders of each type is worse than average in all M − 1 auctions. But when M is
large, the probability of so many deviations from the long-run averages of arrival rates and mixed
strategy auction choices is extremely low. Thus, with very high probability the state when the
buyer arrives is such that playing according to σ∗M,Jk

gives an expected payoff of at least v∗M,Jk
(x).

Similarly, as M grows and the number of potential bidders in each of the M auctions becomes
large, the same type of arbitrage implies that a buyer i of type x would be unlikely to get a payoff
much above the average payoff v∗M,Jk

(x) by submitting a bid in an auction later than specified by
σ∗M,Jk

. (Participating in an earlier auction gives a payoff below v∗M,Jk
(x) by the construction of

σ∗M,Jk
.) If buyer i participates in an auction that should not under σ∗M,Jk

receive a bid, then buyers
in the next period see that a bid has been placed but do not observe the amount of the bid. Recall
that the conditional belief system p∗M,Jk

assigns probability one to that unobserved bid being the
lowest amount feasible, and so the off-path bid does not deter subsequent buyers from participating
in that auction. Whether the deviation to a later auction is on-path or off-path, then, as future
buyers follow σ∗M,Jk

, the probability that buyer i winds up with a payoff above v∗M,Jk
(x) shrinks to

zero.
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E.3 Showing that bids are increasing in type

To complete the proof of Theorem 1, we need to show that condition (ii) is satisfied; that is, that
x−(1− α) v∗M,Jk

(x) is increasing in x. It is sufficient to show that for high enough k, the derivative
of v∗M,Jk

(x) is less than 1/ (1− α); more precisely, that for types y > x, v∗M,Jk
(y) − v∗M,Jk

(x) <
(y − x) / (1− α).

The argument is standard. A buyer’s expected payoff in the dynamic game equals his type times the
probability that he eventually wins an auction, minus the expected price that he pays conditional
on winning. Let qk(x) denote the steady-state probability that a buyer who plays the strategy
σ∗M,Jk

(x) (that is, the strategy of a type-x buyer) eventually wins an auction, given that all other
buyers play according to σ∗M,Jk

. Similarly, let tk(x) denote the expected payment of such a buyer.
Note that neither qk (·) nor tk (·) depends on the buyer’s type – they depend only on his strategy.

Using that notation, we can write

v∗M,Jk
(x) = x · qk(x)− tk(x).

Let ε̄ ≡ min {|x′′ − x′| : x′, x′′ ∈ X}, and pick an ε′ ∈
(

0, α
1−α ε̄

)
. Because for high enough k playing

according to σ∗M,Jk
is an ε′-best response for all types, we have that

v∗M,Jk
(x) = x · qk(x)− tk(x)

≥ x · qk(y)− tk(y)− ε′
= [x− y] · qk(y) + y · qk(y)− tk(y)− ε′
= [x− y] · qk(y) + v∗M,Jk

(y)− ε′.

Because qk (·) ≤ 1, we get v∗M,Jk
(y)− v∗M,Jk

(x) ≤ y − x+ ε′. Because ε′ < α
1−α ε̄, we conclude that

v∗M,Jk
(y)− v∗M,Jk

(x) < (y − x) / (1− α), as desired.

F Endogenous exit

Suppose losing buyers find it costly to stay in the market and bid again. The cost is denoted by
c, and it is randomly drawn from a distribution FC with support [0, c]. The buyer draws the cost
after she bids and loses, and it is independently distributed across a buyer’s losses. The probability
that a buyer with type x exits is then given by

Pr{c > V (x; ρ)} ≡ 1− FC(V (x; ρ)),

and the optimal bid function is

σ(x) = x− FC(V (x; ρ))V (x; ρ).

The ex ante value function is given by the function
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V (x) =

∫ σ(x)
0 (x−m)dGM |B(m|σ(x))

[1− FC(V (x; ρ))(1−GM |B(σ(x)|σ(x))]
.

Therefore, given GM |B, FC and x, we have three equations to solve for three unknowns: the bid
b = σ(x), the continuation value v = V (x; ρ), and the exit probability α = 1 − FC(v). FC is not
known, but it can be identified from the data. To see why, note that we can use the transformation
x = η(b) and express the above three equations in bid space. The probability of exit becomes

α(b) = 1− FC(V (η(b); ρ)).

The inverse bid function is

η(b) = b+ (1− α(b))V (η(b); ρ),

and the value equation becomes

V (η(b); ρ) =

∫ b
0 (η(b)−m)dGM |B(m|b)

[1− (1− α(b))(1−GM |B(b|b))]
.

Substituting V (η(b)) into the inverse bid function, we obtain

η(b) = b+
(1− α(b))

α(b)
GM |B(b|b)[b− E(M |M < b, b)].

Once again, estimates of the private values can be obtained directly from data on bids and exits.
Thus, FE (and FL) are identified. To identify FC , we solve v(b) = V (η(b); ρ) for each bid b and
then plot α(b) against v(b) to determine the distribution FC .

G Additional figures

Figure 7 shows the distributions of times between bids, across all bidders and auctions, compared
to the exponential distribution. Figure 8 shows the distributions of new bidder arrivals per hour,
compared to the Poisson distribution.

In Section 6.3 we tested our model by comparing the fL estimated directly from the data to the
fL implied by our model—i.e., the fL that satisfies the flow restrictions in equation (6). To show
that the test has power to reject the model, we ran it using an incorrect estimate of G. Instead
of estimating GM |B, we simply used the empirical CDF of the winning bid as our estimate of G,
applying it both when estimating fE and when imposing the rescaling implied by equation (6).
The results, shown in Figure 9, are clearly worse than those in Figure 4, which is based on the valid
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Figure 7: Time between bids
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Figure 8: Bidder arrivals per hour
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estimate of GM |B.

H Computing bids in counterfactual simulations

An equilibrium of our model consists of a bid function σ(x) and a distribution of the maximum rival
bid GM |B such that σ(x) is optimal given bidders’ beliefs, and GM |B is the stationary distribution
generated when bidders bid according to σ(x). Formally, an equilibrium must satisfy
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Figure 9: Test of restriction on fL using wrong estimate of G
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σ(x) = x− (1− α)V (x)

and

V (x) =

∫ σ(x)
0 (x− p)dGM |B(p|σ(x))[

1− (1− α)(1−GM |B(σ(x)|σ(x)))
]

When the state of the market is a stationary process, GM |B(σ(x)|σ(x)) can be computed as the
average probability that a buyer of type x wins. As long as the bid function is monotone, this prob-
ability does not depend on the bids, so we can find an equilibrium by first simulating a large number
of auctions to compute GM |B(σ(x)|σ(x)), and then numerically solving for the value function V (x)
that satisfies conditions (H) and (H). The latter step is a search for a fixed point in function space,
and can be accomplished with a simple iterative procedure. We set V (x) equal to zero initially,
so that σ(x) = x, and then compute the surplus that the simulated bidders would have earned in
that case. This computed surplus becomes the new estimate of V (x), and the bids are updated
according to (H). Surplus is then recomputed for all bidders, and the process is iterated until the
newest estimate of V (x) is unchanged relative to the previous one.

In each simulated auction, we compute the winner’s surplus as x− p, setting p = y − (1− α)V (y)
where y is the type of the second-highest bidder. To get lifetime surplus (the full continuation
value), we scale this result by 1/

[
1− (1− α)(1−GM |B(σ(x)|σ(x)))

]
. Using the data from the

simulated auctions, we estimate GM |B(σ(x)|σ(x)) with a local polynomial regression of the win
dummy on x.
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